Skip to main content
Log in

β-adrenergic receptor regulation and antidepressants: The influence of adrenocorticotropin

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

Chronic administration of antidepressants reduces brainβ-adrenergic receptor number and function. Peptide and steroid hormones are also capable of modifying receptor activity, and because circulating levels of these substances are altered in depressed patients, studies have been undertaken to determine whether hormones influence the neurochemical responses to antidepressant drugs. Co-administration of adrenocorticotropin (ACTH) and imipramine induces a more rapid reduction in brainβ-adrenergic receptor binding than is observed with either substance alone. Moreover, by itself, ACTH treatment alters the ability of norepinephrine to stimulate cAMP accumulation in brain tissue without affecting recognition site number. Lesioning of the dorsal noradrenergic bundle blocks the decline inβreceptor number and activity produced by the ACTH-imipramine treatment. Indeed, administration of ACTH facilitated the increase inβ-Preceptor number that occurs following denervation. These data indicate that ACTH treatment influencesβ-adrenergic receptor adaptations that occur in response to a change in synaptic activity. Such findings have implications in regard to the clinical responses to antidepressants, and the role of hormones in the etiology of affective illness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banerjee, S. P., Kung, L. S., Riggi, S., Chanda, S. K.: Development ofβ-adrenergic receptor subsensitivity by antidepressants. Nature268, 455–456 (1977).

    Google Scholar 

  • Bylund, D. B., Snyder, S. H.:β-Adrenergic binding in membrane preparations from mammalian brain. Mol. Pharmacol.12, 568–580 (1976).

    Google Scholar 

  • Creese, I.: Receptor interactions of neuroleptics. In: Neuroleptics: Neurochemical, Behavioral and Clinical Pespectives (Coyle, J. T., Enna, S. J., eds.), pp. 183–222. New York: Raven Press. 1983.

    Google Scholar 

  • Denber, H. C. B.: Pharmacotherapy of depression. In: Psychopharmacological Treatment-Theory and Practice (Denber, H. C. B., ed.), pp. 121–135. New York: Marcel Dekker. 1975.

    Google Scholar 

  • DeWied, D.: Effects of peptide hormones on behavior. In: Frontiers in Neuroendocrinology (Ganong, W. G., Martini, L., eds.), pp. 97–140. London: Oxford University Press. 1969.

    Google Scholar 

  • DeWied, D., Bohus, B.: Long-term and short-term effects on retention of a conditioned avoidance response in rats following treatment with long-acting pitressin andα-MSH. Nature212, 1484–1486 (1966).

    Google Scholar 

  • Duman, R., Enna, S. J.: ACTH administration alters brainβ-adrenergic receptor affinity and function. Proc. Soc. Neurosci. (in press).

  • Duman, R. S., Andree, T., Kendall, D. A., Enna, S. J.: The effect of adrenocorticotropin administration onβ-adrenergic receptor adaptions in rat brain cerebral cortex. J. Neurochem. (in press).

  • Enna, S. J., Strada, S. J.: Post-synaptic receptors: recognition sites, ion channels and second messangers. In: Clinical Neurosciences (Rosenberg, R., Grossman, R., Schocket, S., Heinz, E.R., Willis, W., eds.). New York: Churchill Livingstone (in press).

  • Enna, S. J., Kendall, D. A.: Interaction of antidepressants with brain neurotransmitter receptors. J. Clin. Psychopharmacol.1, 12S-16S (1981).

    Google Scholar 

  • Fuller, R. W.: Enhancement of monoaminergic neurotransmission by antidepressant drugs. In: Antidepressants: Neurochemical, Behavioral and Clinical Perspectives (Enna, S. J., Malick, J. B., Richelson, E., eds.), pp. 1–12. New York: Raven Press. 1981.

    Google Scholar 

  • Kakiuchi, S., Rall, T. W.: The influence of chemical agents on the accumulation of adenosine 3′ 5′-phosphate in slices of rabbit cerebellum. Mol. Pharmacol.4, 367–378 (1968).

    Google Scholar 

  • Kendall, D. A., Duman, R., Slopis, J., Enna, S. J.: Influence of adrenocortropin hormone and yohimbine on antidepressant-induced declines in rat brain neurotransmitter receptor binding and function. J.Pharmacol. Exp. Therap.222, 566–571 (1982 a).

    Google Scholar 

  • Kendall, D. A., Stancel, G. M., Enna, S. J.: The influence of sex hormones on antidepressant-induced alterations in neurotransmitter receptor binding. J. Neurosci.2, 354–360 (1982 b).

    Google Scholar 

  • Kendall, D. A., Stancel, G. M., Enna, S. J.: Imipramine: effect of ovarian steroids on modifications in serotonin receptor binding. Science211, 1183–1185 (1981).

    Google Scholar 

  • Konig, J. F., Klippel, R. A.: The Rat Brain. Baltimore: Williams and Wilkins. 1962.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J.Biol. Chem.193, 265–275 (1951).

    Google Scholar 

  • Mobley, P. L., Sulser, F.: Adrenal corticoids regulate the sensitivity of noradrenaline receptor-coupled adenylate cyclase in brain. Nature286, 608–609 (1980).

    Google Scholar 

  • Olpe, H. R., Jones, R. S. G.: Excitatory effects of ACTH on noradrenergic neurons of the locus coerulus in the rat. Brain Res.251, 177–179 (1982).

    Google Scholar 

  • Olsen, R. W., Enna, S. J.: GABA and anxiolytics. In: Anxiolytics: Neurochemical, Behavioral and Clinical Perspectives (Malick, J. B., Enna, S. J., Yamamura, H. I., eds.), pp. 55–76. New York: Raven Press. 1983.

    Google Scholar 

  • Prange, A. J., Lipton, M. A., Nemeroff, C. B., Wilson, I. C.: The role of hormones in depression. Life Sci.20, 1305–1318 (1977).

    Google Scholar 

  • Roberts, D. C., Bloom, F. E.: Adrenal steroid-induced changes inβ-adrenergic receptor binding in rat hippocampus. Europ. J. Pharmacol.74, 37–41 (1981).

    Google Scholar 

  • Schildkraut, J. J.: The catecholamine hypothesis of affective disorders. A review of supporting evidence. Am. J. Psychiat.122, 509–522 (1965).

    Google Scholar 

  • Shopsin, B., Wilk, S., Sathananthan, G., Gershon, S., Davis, K.: Catecholamines and affective disorders revised: A critical assessment. J. Nerv. Ment. Dis.158, 369–383 (1974).

    Google Scholar 

  • Sulser, F. Janowsky, A. J., Okada, F., Manier, D. H., Mobley, P. L.: Regulation of recognition and action function of the norepinephrine (NE) receptorcoupled adenylate cyclase system in brain: implications for the therapy of depression, Neuropharmacology22, 425–531 (1983).

    Google Scholar 

  • Sugrue, M. F.: Chronic antidepressant administration and adaptive changes in central monoaminergic systems. In: Antidepressants: Neurochemical, Behavioral and Clinical Perspectives (Enna, S. J., Malick J. B., Richelson, E., eds.), pp. 13–30. New York: Raven Press. 1981.

    Google Scholar 

  • Vetulani, J., Sulser, F.: Actions of various antidepressant treatments reduce reactivity of noradrenergic cyclic AMP generating system in limbic forebrain. Nature257, 495–496 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enna, S.J., Duman, R.S. β-adrenergic receptor regulation and antidepressants: The influence of adrenocorticotropin. J. Neural Transmission 57, 297–307 (1983). https://doi.org/10.1007/BF01249000

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01249000

Keywords

Navigation