Skip to main content
Log in

On-line glucose monitoring by using microdialysis sampling and amperometric detection based on ‘wired’ glucose oxidase in carbon paste

  • Original Papers
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

In-vitro on-line glucose monitoring is described, based on microdialysis sampling and amperometric detection operated in a flow-injection system. Samples were injected into a two-electrode microcell containing an Ag/AgCl quasi-reference electrode and a glucose enzyme electrode as the working electrode, operated at + 0.15 Vvs. Ag/AgCl. The enzyme electrode is constructed by mixing the ‘wired’ glucose oxidase into carbon paste. {Poly[1-vinylimidazole osmium(4,4′-dimethylbipyridine)2Cl)]}+/2+ was used to ‘wire’ the enzyme. The non-coated electrodes, cross-linked with poly(ethylene glycol) diglycidyl ether, responded linearly to glucose concentrations up to 60 mM, and were characterized by a sensitivity of 0.23 μA mM−1 cm−2, when operated in flow injection mode and of 5.4 μAmM –1 cm–2 in steady-state conditions. This sensitivity of the resulting enzyme electrode was 50% lower than that of similarly prepared but non-cross-linked electrodes. However, the cross-linked electrodes showed superior operational and storage stabilities, which were further improved by coating the electrodes with a negatively charged Eastman AQ film. An in-house designed microdialysis probe, equipped with a polysulphone cylindrical dialysis membrane, yielded a relative recovery of 50–60% at a perfusion rate of 2.5 μl/min–1 in a well stirred glucose solution. The on-line set up effectively rejected common interferences such as ascorbic acid and 4-acetaminophen when present at their physiological concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Reach, G. S. Wilson,Anal. Chem. 1992,64, 381A.

    PubMed  Google Scholar 

  2. F. S. Keck, W. Kerner, C. Meyerhoff, H. Zier, E. F. Pfeiffer,Horm. Metab. Res. 1991,23, 617.

    PubMed  Google Scholar 

  3. G. S. Wilson, Y. Zhang, G. Reach, D. Moatti-Sirat, V. Poitout, D. R. Thévenot, F. Lemonnier, J.-C. Klein,Clin. Chem. 1992,38, 1613.

    PubMed  Google Scholar 

  4. Y. Zhang, Y. Hu, G. S. Wilson,Anal. Chem. 1994,66, 1183.

    PubMed  Google Scholar 

  5. E. Csöregi, P. C. Quinn, W. D. Schmidtke, S.-E. Lindquist, V. M. Pishko, L. Ye, I. Katakis, A. J. Hubbell, A. Heller,Anal. Chem. 1994,66, 3131.

    PubMed  Google Scholar 

  6. E. Csöregi, D. W. Schmidtke, A. Heller,Anal. Chem. 1995,34, 1240.

    Google Scholar 

  7. C. E. Lunte, D. O. Scott, P. T. Kissinger,Anal. Chem. 1991,63, 773A.

    Google Scholar 

  8. C. B. Kissinger, P. T. Kissinger,Am. Lab. 1990,22, 94.

    Google Scholar 

  9. C. Meyerhoff, F. Bischof, F. Sternberg, H. Zier, E. F. Pfeiffer,Diabetologia 1992,35, 1087.

    PubMed  Google Scholar 

  10. J. Bolinder, U. Ungerstedt, P. Arner,Diabetologia 1992,35, 1177.

    PubMed  Google Scholar 

  11. M. Mascini, D. Moscone, L. Bernardi,Sens. Actuators B 1992,6, 143.

    Google Scholar 

  12. D. Moscone, M. Mascini,Ann. Biol. Clin. (Paris)1992,50, 323.

    Google Scholar 

  13. F. S. Keck, W. Kerner,Sens. Actuators B 1993,16, 435.

    Google Scholar 

  14. F. Palmisano, D. Centonze, A. Guerrieri, P. G. Zambonin,Biosens. Bioelectron. 1993,8, 393.

    Google Scholar 

  15. D. Moscone, M. Mascini,Analusis 1993,21, M40.

    Google Scholar 

  16. T. Laurell,Sens. Actuators B 1993,13, 323.

    Google Scholar 

  17. J. de Boer, J. Korf, H. Plijter-Groendijk,Int. J. Artif. Org. 1994,17, 163.

    Google Scholar 

  18. K. H. Hazen, M. A. Arnold, G. W. Small,Appl. Spectrosc. 1994,48, 477.

    Google Scholar 

  19. H. M. Heise, R. Marbach, T. Koschinsky, F. A. Gries,Artif. Organs 1994,18, 439.

    PubMed  Google Scholar 

  20. D. M. Haaland, M. R. Robinson, G. W. Koepp, E. V. Thomas, R. P. Eaton,Appl. Spectrosc. 1992,46, 1575.

    Google Scholar 

  21. S. J. Alcock, B. Danielsson, A. P. F. Turner,Biosens. Bioelectron. 1992,7, 243.

    PubMed  Google Scholar 

  22. U. Ungerstedt,J. Internal Med. 1991,230, 365.

    PubMed  Google Scholar 

  23. T. J. Ohara, R. Rajagopalan, A. Heller,Anal. Chem. 1994,66, 2451.

    PubMed  Google Scholar 

  24. A. J. Tüdös, M. C. van Dyck, H. Poppe, W. T. Kok,Chromatographia 1993,37, 79.

    Google Scholar 

  25. E. Csöregi, G. Marko-Varga, L. Gorton, A. J. Tüdös, W. T. Kok,Anal. Chem. 1994,66, 3604.

    Google Scholar 

  26. R. N. Adams,Anal. Chem. 1958,30, 1576.

    Google Scholar 

  27. K. Kalcher, J. Wang, J.-M. Kauffmann, I. Svancara, K. Vytras, C. Neuhold, Z. Yang,Electroanalysis 1995,7, 5.

    Google Scholar 

  28. L. Gorton,Electroanalysis 1995,7, 23.

    Google Scholar 

  29. L. Gorton, G. Jönsson-Pettersson, E. Csöregi, K. Johansson, E. Dominguez, G. Marko-Varga,Analyst 1992,117, 1235.

    Google Scholar 

  30. A. Heller,J. Phys. Chem. 1992,96, 3579.

    Google Scholar 

  31. T. J. Ohara, R. Rajagopalan, A. Heller,Anal. Chem. 1993,65, 3512.

    PubMed  Google Scholar 

  32. I. Svancara, H. M., K. Vytras, K. Kalcher,Electroanalysis in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csöregi, E., Laurell, T., Katakis, I. et al. On-line glucose monitoring by using microdialysis sampling and amperometric detection based on ‘wired’ glucose oxidase in carbon paste. Mikrochim Acta 121, 31–40 (1995). https://doi.org/10.1007/BF01248238

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01248238

Key words

Navigation