Skip to main content
Log in

Degree of best approximation by trigonometric blending functions

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Achyeser, N., Krein, M.: Sur la meilleure approximation des fonctions périodiques dérivables au moyen de sommes trigonométriques. Compt. Rend. (Doklady) Acad. Sci. URSS15, 107–111 (1937)

    Google Scholar 

  2. Cheney, E.W.: Best approximation in tensor product spaces. In: Numerical analysis (G.A. Watson, Ed.), 25–32. Lect. Notes Math.773. Berlin-Heidelberg-New York: Springer 1980

    Google Scholar 

  3. Cheney, E.W.: The best approximation of multivariate functions by combinations of univariate ones. In: Approximation Theory IV (C.K. Chui, L.L. Schumaker, J.D. Ward, Eds.), 1–26. New York-London: Academic Press 1983

    Google Scholar 

  4. Cheney, E.W., McCabe, J.H., Phillips, G.M.: A mixed-norm bivariate approximation problem with applications to Lewanowicz operators. In: Multivariate approximation (D.C. Handscomb, Ed.), 315–323. London-New York: Academic Press 1978

    Google Scholar 

  5. Favard, J.: Sur les meilleurs procédés d'approximation de certaines classes de fonctions par des polynomes trigonométriques. Bull. Sci. Math.61, 209–224 and 243–256 (1937)

    Google Scholar 

  6. Gilbert, J.E., Leih, T.J.: Factorization, tensor products, and bilinear forms in Banach space theory. In: Notes in Banach spaces (H.E. Lacey, Ed.), 185–305. Austin-London: University of Texas Press 1980

    Google Scholar 

  7. von Golitschek, M.: Approximation of functions of two variables by the sum of two functions of one variable. In: Numerical methods of approximation theory, Vol. 5 (L. Collatz, G. Meinardus, H. Werner, Eds.). Internat. Ser. Numer. Math.52, 117–124 (1980)

  8. von Golitschek, M., Cheney, E.W.: The best approximation of bivariate functions by separable functions. Contemporary Mathematics, Vol. 21, 125–136. Providence: Amer. Math. Soc. 1983

    Google Scholar 

  9. Gordon, W.J.: Distributive lattices and the approximation of multivariate functions. In: Approximation with special emphasis on spline functions (I.J. Schoenberg, Ed.), 223–277. New York: Academic Press 1969

    Google Scholar 

  10. Gordon, W.J.: Blending-function methods of bivariate and multivariate interpolation and approximation. SIAM J. Numer. Anal. 8, 158–177 (1971)

    Google Scholar 

  11. Halton, E.J., Light, W.A.: Existence questions in tensor product spaces. In: Approximation Theory IV (C.K. Chui, L.L. Schumaker, J.D. Ward, Eds.), 499–504. New York-London: Academic Press 1983

    Google Scholar 

  12. Halton, E.J., Light, W.A.: Projections on tensor product spaces. University of Lancaster Math. Dept. Report, Lancaster, England, 1983

  13. Hardy, G.H., Rogosinski, W.W.: Fourier series. Cambridge: University Press 1968

    Google Scholar 

  14. Haußmann, W., Zeller, K.: Blending interpolation and bestL 1-approximation. Arch. Math. (Basel)40, 545–552 (1983)

    Google Scholar 

  15. Haußmann, W., Zeller, K.: Uniqueness and non-uniqueness in bivariateL 1-approximation. In: Approximation Theory IV (C.K. Chui, L.L. Schumaker, J.D. Ward, Eds.), 509–514. New York-London: Academic Press 1983

    Google Scholar 

  16. Haußmann, W., Zeller, K.: Mixed norm multivariate approximation with blending functions. In: Proceedings of the International Conference on Constructive Function Theory, Varna 1984 (Bl. Sendov et al., Eds.). To appear

  17. Light, W.A., Cheney, E.W.: Some best-approximation theorems in tensor product spaces. Math. Proc. Camb. Philos. Soc.89, 385–390 (1981)

    Google Scholar 

  18. Lorentz, G.G.: Approximation of functions. New York: Holt, Rinehart and Winston 1966

    Google Scholar 

  19. Timan, A.F.: Theory of approximation of functions of a real variable. New York: MacMillan 1963

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haußmann, W., Jetter, K. & Steinhaus, B. Degree of best approximation by trigonometric blending functions. Math Z 189, 143–150 (1985). https://doi.org/10.1007/BF01246949

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01246949

Navigation