Skip to main content
Log in

Determination of nickel in water by electrothermal atomic absorption spectrometry with preconcentration on a tungsten foil

  • Original Papers
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A preconcentration method for nickel in waters involving adsorption on tungsten foil, followed by electrothermal atomic absorption spectrometry (ETAAS) with a tungsten tube atomizer is described. The most suitable pH for nickel adsorption was 5 and the optimum immersion time was 2 min. Severe interferences from co-existing elements (Al, Ca, Cu, Fe, K, Mg, Na, Pb and Zn) on the Ni AA signal were observed. Under optimal conditions, the preconcentration of nickel on W foil could eliminate interferences from these elements. The detection limit of nickel by preconcentration-ETAAS was 0.1 ng/ml (3S/N). The method with preconcentration on tungsten foil was applied to the determination of nickel in river water. The recovery of spiked nickel was 93–102%. The tungsten foil preconcentration method is sensitive, simple, and convenient. This adsorption method can be utilized inin situ-sampling of ultra-trace nickel in environmental samples (water). Furthermore, after sampling it is easy to carry and store the W-foil without contamination for long time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. W. Sunderman, Jr.,Arch. Toxicol. 1989,Suppl. 13, 40.

    Google Scholar 

  2. International Committee on Nickel Carcinogenesis in Man,Scand. J. Work Environ. Health 1990,16, 1.

    Google Scholar 

  3. The Standards legislated by French Government.

  4. The standards legislated by U. S. Environmental Protection Agency. The standards legislated by Federal Ministry for the Environment of Germany.

  5. G. Bozai, M. Melesh,Microchem. J. 1995,51, 39.

    Google Scholar 

  6. E. M. Sedykh, Yu. G. Tatsy, G. R. Ishmiyarova, M. M. Ostronova,At. Spectrosc. 1994,15, 245.

    Google Scholar 

  7. T. Nakamura, H. Oka, M. Ishii, J. Satou,Analyst 1994,119, 1397.

    Google Scholar 

  8. L. C. Azeredo, R. E. Sturgeon, A. J. Curtius,Spectrochim. Acta 1993,48B, 91.

    Google Scholar 

  9. I. Kasahara, S. N. Willie, R. E. Sturgeon, S. S. Herman, S. Taguchi, K. Goto,Bunseki Kagaku 1993,42, 107.

    Google Scholar 

  10. M. Y. Khuhawar, P. Das,J. Ghent. Soc. Pak. 1996,18, 6.

    Google Scholar 

  11. M. A. Kabil, S. E. Ghazy, M. R. Lasheen, M. A. Shallaby, N. S. Amar,Fresenius J. Anal. Chem. 1996,354, 371.

    Google Scholar 

  12. H. W. Gao,Can. J. Appl. Spectrosc. 1994,39, 132.

    Google Scholar 

  13. Y. J. Lin, Z. B. Gong, Z. X. Zhuang, Z. W. Deng, X. R. Wang,Ferai Kexue Xuebao 1995,11, 16.

    Google Scholar 

  14. E. Mentasti, V. Porta, O. Abollino, C. Sarzanin,Ann. Chim. (Rome) 1991,81, 343.

    Google Scholar 

  15. E. M. Tat'yankina,Zh. Anal. Khim. 1993,48, 1664.

    Google Scholar 

  16. K. S. Huang, S. J. Jiang,Fresenius J. Anal. Chem. 1993,347, 238.

    Google Scholar 

  17. J. W. McLaren, J. W. H. Lam, S. S. Berman, K. Akatsuka, M. Aparecida Azeredo,J. At. Anal. Spectrom. 1993,8, 279.

    Google Scholar 

  18. E. W. Wolff, M. P. Landy, D. A. Peel,Anal. Chem. 1981,53, 1566.

    Google Scholar 

  19. Y. Hoshino, T. Utsumomiya, K. Fukui,Chem. Lett. 1976, 947. Y. Hoshino, T. Utsumomiya, K. Fukui,Nippon Kagaku Kaishi 1977, 808.

  20. M. P. Newton, J. V. Chauvin, D. G. Davis,Anal. Lett. 1973,6, 89.

    Google Scholar 

  21. K. Ohta, M. Yokoyama, J. Ogawa, T. Mizuno,Analusis 1996,24, 22.

    Google Scholar 

  22. K. Ohta, T. Mizuno,Anal. Chim. Acta 1989,217, 377.

    Google Scholar 

  23. K. Kitagawa, T. Tanahashi, M. Yanagiswa,Anal. Sci. 1990,6, 87.

    Google Scholar 

  24. I. Barin, O. Knacke,Thermochemical Properties of Inorganic Substances, VDI, Düsseldorf, 1973, p. 575.

  25. D. R. Lide (ed.)Handbook of Chemistry and Physics, 72nd edn., CRC, Boca Raton, 1991, pp. 4–78.

    Google Scholar 

  26. E. V. Alonso, J. M. C. Pavon, A. Garcia de Torres, M. T. S. Cordero,Anal. Chim. Acta 1993,283, 224.

    Google Scholar 

  27. D. Nicholls,Comprehensive Inorganic Chemistry, Vol. 3 (J. C. Bailar, H. J. Emeleus, R. Nyholm, A. F. Trotman-Dickenson, eds.), Pergamon, Oxford, 1973, pp. 1128–1129.

    Google Scholar 

  28. L. H. J. Lajunen,Spectrochemical Analysis by Atomic Absorption and Emission, Royal Society of Chemistry, Cambridge, 1992, pp. 203–204, 231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohta, K., Ishida, K., Itoh, Si. et al. Determination of nickel in water by electrothermal atomic absorption spectrometry with preconcentration on a tungsten foil. Mikrochim Acta 129, 127–132 (1998). https://doi.org/10.1007/BF01246860

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01246860

Key words

Navigation