Skip to main content
Log in

Virtual LSPs at e+ e colliders

  • Theoretical physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Currently popular search strategies for supersymmetric particles may be significantly affected due to relatively light sneutrinos which decay dominantly into invisible channels. In certain cases the second lightest neutralino may also decay invisibly leading to two extra carriers of missing energy (in addition to the lightest supersymmetric particle (LSP) ) — the virtual LSPs (VLSPs). A tree lavel calculation shows that if the sneutrino mass happens to be in the small but experimentally allowed range (m ≈ν ≈ 45–55 GeV), these particles together with neutralino pairs may contribute significantly to the missing energy in the process e+e → γ+ E at LEP-2 energies as an enhancement over the Standard Model or the conventional MSSM predictions. It is further shown that a much larger region of the parameter space can be scanned at a high luminosity e+e collider at 500 GeV like the proposed NLC machine. Moreover, at both LEP-2 and NLC this process may play a complementary role to direct chargino searches, which may fail due to a near mass degeneracy of the chargino and the sneutrino. Formulae for the cross sections taking into account full mixings of the charginos and the neutralinos are derived. The signal remains observable even in the context of more restricted models based onN=1 SUGRA with common scalar and gaugino masses. A preliminary study of the QED radiative corrections due to soft multiple photon emission as well as hard collinear bremsstrahlung indicates that these corrections play a crucial role in estimating the background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For reviews see, for example, H.P. Nilles, Phys. Rep.110 (1984), 1;

    Article  ADS  Google Scholar 

  2. P. Nath, R. Arnowitt and A. Chamseddine, Applied N = 1 Supergravity, ICTP Series in Theo. Phys., Vol I, World Scientific (1984)

  3. H. Haber and G. Kane, Phys. Rep.117, 75 (1985);

    Article  ADS  Google Scholar 

  4. S.P. Misra, Introduction to Supersymmetry and Supergravity, Wiley Eastern, New Delhi (1992)

    MATH  Google Scholar 

  5. A. Datta, B. Mukhopadhyaya and M. Guchhait, Mod. Phys. Lett.,10, 1011 (1995)

    Article  ADS  Google Scholar 

  6. Some apsects of VLSPs in the context of SUSY searches at hadron colliders have been considered by H. Baer, C. Kao and X. Tata, Phys. Rev.D48, R2978 (1993);

    ADS  Google Scholar 

  7. R.M. Barnett, J. Gunion and H. Haber, Phys. Lett.B315, 349 (1993)

    Article  ADS  Google Scholar 

  8. CDF collaboration, F. Abe et al., Phys. Rev. Lett.69, 3439 (1992).

    Article  ADS  Google Scholar 

  9. DO collaboration, S. Abachi et al, Phys. Rev. Lett.75, 619 (1995)

    ADS  Google Scholar 

  10. S. Chakraborty, A. Datta and M. Guchait, Z. Phys.C68, 325 (1995)

    ADS  Google Scholar 

  11. A. Datta, Aseshkrishna Datta and S. Raychaudhuri, Phys.Lett.B349, 113 (1995)

    Article  ADS  Google Scholar 

  12. A. Datta, M. Drees and M. Guchait, Z.Phys.C69, 347 (1996)

    Google Scholar 

  13. See, for example, H. Wachsmuth (ALEPH Collaboration), talk presented at the Workshop on High Energy Physics Phenomenology-4, Calcutta, India, January 2–14, 1996 (to appear in the proceedings); The L3 Collaboration: M. Acciari et al, CERN - PPE/96 - 29;

  14. The OPAL Collaboration: G. Alexander et al, Phys. Lett.B377, 181 (1996);

    Article  ADS  Google Scholar 

  15. The ALEPH Collaboration: D. Buskulic et al, Phys. Lett.B373, 246 (1996);

    Article  ADS  Google Scholar 

  16. The DELPHI Collaboration: P. Abreu et al, Phys. Lett.B387, 651 (1996)

    Article  ADS  Google Scholar 

  17. H. Baer, M. Drees, X. Tata, Phys. Rev.D41, 3414 (1990);

    ADS  Google Scholar 

  18. G. Bhattacharyya, A. Datta, S. N. Ganguli and A. Raychaudhuri, Phys. Rev. Lett.64, 2870 (1990);

    Article  ADS  Google Scholar 

  19. A. Datta, M. Guchhait and A. Raychaudhuri, Z. Phys.C54, 513 (1992);

    ADS  Google Scholar 

  20. J. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett.B237, 923 (1990);

    Google Scholar 

  21. M. Davier in Proc. Joint International Lepton-Photon and Europhysics Conference in High Energy Physics, Geneva, 1992 (eds. S. Hegarty et al., World Scientific, 1992) p151

  22. K.J.F. Gaemers, R. Gastmans and F.M. Renard, Phys. Rev.D19, 1605 (1979);

    ADS  Google Scholar 

  23. M. Caffo, R. Gatto and E. Remiddi, Nucl. Phys.B286, 293 (1986)

    ADS  Google Scholar 

  24. F.A. Berends et al, Nucl. Phys.B301, 583 (1988)

    Article  ADS  Google Scholar 

  25. L. Bento, J.C. Romao, A. Barosso Phys. Rev.D33, 1488 (1986)

    ADS  Google Scholar 

  26. M. Chen et al, Phys. Rep.,159, 2019 (1988)

    Article  Google Scholar 

  27. C.H. Chen, M. Drees, J.F. Gunion, Phys. Rev. Lett.76, 2002 (1996)

    Article  ADS  Google Scholar 

  28. K. Grassie and P.N. Pandita, Phys. Rev.D30, 22 (1984)

    ADS  Google Scholar 

  29. S. Ambrosanio, B. Mele, G. Montagna, O. Nicrosini, and F. Piccinini , Rome preprint, ROMEI-1126/95; hep-ph/9601292

  30. For a review and further references see, for example, L. Trentadue, Z Physics at LEP 1, Vol. 1 (eds. G. Altarelli et al) p129

  31. O. Nicrosini and L. Trentadue, Phys. Lett.,B196, 551 (1987);

    Article  ADS  Google Scholar 

  32. O. Nicrosini and L. Trentadue Nucl. Phys.B318, 1 (1989).

    Article  ADS  Google Scholar 

  33. G. Montagna, O. Nicrosini and F. Piccinini and L. Trentadue, Nucl.Phys.B452, 161 (1995)

    Article  ADS  Google Scholar 

  34. See, e.g., M. Tigner in Proc. XXVII International Conference on High Energy Physics, Glasgow, 1994 (eds. P.J. Bussey and I.G. Knowles, Institute of Physics Publishing, 1994)

  35. L.E. Ibanez. and G.G. Ross, Phys. Lett.B110, 215 (1982);

    Article  ADS  Google Scholar 

  36. L.E. Ibanez and J. Lopez, Nucl. Phys.B233, 511 (1984);

    Article  ADS  Google Scholar 

  37. M. Drees and M.M. Nojiri, Nucl. Phys.B369, 54 (1992);

    Article  ADS  Google Scholar 

  38. M. Drees, in Proceedings of the Third Workshop on High Energy Particle Physics, Madras, 1994, appeared in Pramana (supplement to Vo1.45, 1995, ed. S. Uma Sankar)

  39. See, e.g., Y. Kawamura, H. Murayama and M. Yamaguchi, Phys. Rev.D51, 1337 (1995);

    ADS  Google Scholar 

  40. M. Olechowski and S. Pokorski, Phys. Lett.B344, 201 (1995)

    Article  ADS  Google Scholar 

  41. See, e.g., H. Baer, C-H. Chen, C. Kao and X. Tata, FSU-HEP-950301 (1995)

  42. S.P. Martin and M.T. Vaughn, Phys.Lett.B318, 331 (1993);

    Article  ADS  Google Scholar 

  43. N.V. Krasnikov, Phys. Lett.B345, 25 (1995)

    Article  ADS  Google Scholar 

  44. A. Datta, M. Guchait and N.Parua, hep-ph/9609413 (to appear in Phys. Lett.B)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datta, A., Datta, A. & Raychaudhuri, S. Virtual LSPs at e+ e colliders. Eur. Phys. J. C 1, 375–393 (1998). https://doi.org/10.1007/BF01245828

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01245828

Keywords

Navigation