Skip to main content
Log in

(Anti-)self-dual homogeneous vacuum gluon field as an origin of confinement and SUL(NF) × SUR(NF) symmetry breaking in QCD

  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

It is shown that an (anti-) self-dual homogeneous vacuum gluon field appears in a natural way within the problem of calculation of the QCD partition function in the form of Euclidean functional integral with periodic boundary conditions. There is no violation of cluster property within this formulation, nor are parity, color and rotational symmetries broken explicitly. The massless limit of the product of the quark masses and condensates,\(m_f \left\langle {\bar \psi _f \psi _f } \right\rangle \), is calculated to all loop orders. This quantity does not vanish and is proportional to the gluon condensate appearing due to the nonzero strength of the vacuum gluon field. We conclude that the gluon condensate can be considered as an order parameter both for confinement and chiral symmetry breaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Leutwyler: Phys. Lett.96B (1980) 154

    Article  ADS  MathSciNet  Google Scholar 

  2. H. Leutwyler: Nucl. Phys.B179 (1981) 129

    Article  ADS  Google Scholar 

  3. E. Elizalde: Nucl. Phys.B243 (1984) 398;

    Article  ADS  Google Scholar 

  4. E. Elizalde, J. Soto:ibid,B260 (1985) 136

    Article  ADS  MathSciNet  Google Scholar 

  5. H. Pagels, E. Tomboulis: Nucl. Phys.B143 (1978) 485

    Article  ADS  MathSciNet  Google Scholar 

  6. G.V. Efimov, S.N. Nedelko: Phys. Rev.D51 (1995) 174

    ADS  Google Scholar 

  7. Ja.V. Burdanov, G.V. Efimov, S.N. Nedelko, S.A. Solunin: Phys. Rev.D54 (1996) 4483

    ADS  Google Scholar 

  8. D. Dineykhan, G.V. Efimov, G. Ganbold, S.N. Nedelko: “Oscillator Representation in Quantum Physics”, LNP series “monographs”, m26 (Springer-Verlag, Heidelberg, 1995);

    Google Scholar 

  9. S.V. Abramova, G.V. Efimov, S.N. Nedelko: Phys.Rev.D52 (1995) 6098

    ADS  Google Scholar 

  10. B.S. DeWitt: Phys. Rev.162 (1967) 1195, 1239

    Article  ADS  MATH  Google Scholar 

  11. L.F. Abbott: Nucl. Phys.B185 (1981) 189

    Article  ADS  Google Scholar 

  12. P. Minkowski: Nucl. Phys.B177 (1981) 203

    Article  ADS  Google Scholar 

  13. H.D. Trottier, and R.M. Woloshyn: Phys. Rev. Lett.70 (1993) 2053

    Article  ADS  Google Scholar 

  14. S. Coleman: in Proceedings of the 1977 International School of Subnuclear Physics, Erice, Italy (Plenum Press, New York, 1979)

    Google Scholar 

  15. R. Carlitz, D.B. Creamer: Ann. Phys. (NY)118 (1979) 429;

    Article  ADS  Google Scholar 

  16. A.V. Smilga: Phys. Rev.D49 (1994) 6836

    ADS  Google Scholar 

  17. C.A. Flory: Phys. Rev.D28 (1984) 1425

    ADS  Google Scholar 

  18. L.S. Brown, R.D. Carlitz, D.B. Creamer, C. Lee: Phys. Rev.D17 (1978) 1583

    ADS  Google Scholar 

  19. L.S. Brown, R.D. Carlitz, C. Lee: Phys. Rev.D16 (1977) 417;

    ADS  Google Scholar 

  20. L.S. Brown, C. Lee: Phys. Rev.D18 (1978) 2180

    ADS  Google Scholar 

  21. G. V. Efimov, M. A. Ivanov: “The Quark Confinement Model of Hadrons” (IOP Publishing, Bristol and Philadelphia, 1993)

    Google Scholar 

  22. G. V. Efimov: “Nonlocal interactions of quantized fields” (Nauka, Moscow, 1977);

    Google Scholar 

  23. G.V. Efimov, V.A. Alebastrov: Comm. Math. Phys.31 (1973) 1;

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. G.V. Efimov, O.A. Mogilevsky, Nucl.Phys.B44 (1972) 541

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efimov, G.V., Nedelko, S.N. (Anti-)self-dual homogeneous vacuum gluon field as an origin of confinement and SUL(NF) × SUR(NF) symmetry breaking in QCD. Eur. Phys. J. C 1, 343–350 (1998). https://doi.org/10.1007/BF01245823

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01245823

Keywords

Navigation