Skip to main content
Log in

Single meson photoproduction and IR renormalons

  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Single pseudoscalar and vector mesons hard semi-inclusive photoproductionγh → MX via higher twist mechanism is calculated using the QCD running coupling constant method. It is proved that in the context of this method a higher twist contribution to the photoproduction cross section cannot be normalized in terms of the meson electromagnetic form factor. The structure of infrared renormalon singularities of the higher twist subprocess cross section and the resummed expression (the Borel sum) for it are found. Comparisons are made with earlier results, as well as with leading twist cross section. Phenomenological effects of studied contributions for π,K,ϱ-meson photoproduction are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Brodsky, R. Blankenbecler, J.F. Gunion: Phys. Rev.D6, 2651 (1972);

    Google Scholar 

  2. S.J. Brodsky, G.R. Farrar: Phys. Rev. Lett.31, 1153 (1973)

    Article  ADS  Google Scholar 

  3. G.P. Lepage, S.J. Brodsky: Phys. Rev.D22, 2157 (1980)

    ADS  Google Scholar 

  4. V.L. Chernyak, A.R. Zhitnitsky: Phys. Rep.112, 173 (1980)

    Article  ADS  Google Scholar 

  5. S.S. Agaev: Phys. Lett.B283, 125 (1992);

    Article  ADS  Google Scholar 

  6. S.S. Agaev: Z. Phys. C-Particles and Fields57, 403 (1993);

    Article  ADS  Google Scholar 

  7. E.L. Berger, S.J. Brodsky: Phys. Rev. Lett.42, 940 (1979);

    Article  ADS  Google Scholar 

  8. E.L. Berger: Z. Phys. C-Particles and Fields4, 289 (1980)

    Article  ADS  Google Scholar 

  9. V.N. Baier, A.G. Grozin: Phys. Lett.B96, 181 (1980);

    Article  ADS  Google Scholar 

  10. S. Gupta: Phys. Rev.D24, 1169 (1981)

    ADS  Google Scholar 

  11. J.A. Bagger, J.F. Gunion: Phys. Rev.D25, 2287 (1982)

    ADS  Google Scholar 

  12. J.A. Hassan, J.K. Storrow: Z. Phys. C-Particles and Fields14, 65 (1982)

    Article  ADS  Google Scholar 

  13. S.J. Brodsky, G.P. Lepage, P.B. Mackenzie: Phys. Rev.D28, 228 (1983)

    ADS  Google Scholar 

  14. R.D. Field, R. Gupta, S. Otto, L. Chang: Nucl. Phys.B186, 429 (1981)

    Article  ADS  Google Scholar 

  15. S.S. Agaev: Phys. Lett.B360, 117 (1995);

    Article  ADS  Google Scholar 

  16. S.S. Agaev: E. Phys. Lett.B369, 379 (1996);

    Google Scholar 

  17. S.S. Agaev: Mod. Phys. Lett.A10, 2009 (1995)

    Article  ADS  Google Scholar 

  18. S.S. Agaev: Mod. Phys. Lett.A11, 957 (1996); ICTP preprint IC/95/291, September 1995, hep-ph/9611215

  19. A.H. Mueller: Nucl. Phys.B250, 327 (1985);

    Article  ADS  MathSciNet  Google Scholar 

  20. H. Contopanagos, G. Sterman: Nucl. Phys.B419, 77 (1994)

    Article  ADS  Google Scholar 

  21. P. Ball, V.M. Braun: Phys. Rev.D54, 2182 (1996)

    ADS  Google Scholar 

  22. S.S. Agaev: Int. J. Mod. Phys.A8, 2605 (1993);

    Article  ADS  Google Scholar 

  23. S.S. Agaev: Int. J. Mod. Phys.A9, 5077 (1994)

    Article  ADS  Google Scholar 

  24. G. 't Hooft: In: The Whys of Subnuclear Physics, Proc. Int. School, Erice, 1977, ed. A. Zichichi, Plenum, New York, 1978;

    Google Scholar 

  25. V.I. Zakharov: Nucl. Phys.B385, 452 (1992)

    Article  ADS  Google Scholar 

  26. A. Erdelyi: Higher transcendental functions, v. 2, McGrow-Hill Book Company, New York, 1953

    Google Scholar 

  27. M. Neubert: Phys. Rev.D51, 5924 (1995);

    ADS  Google Scholar 

  28. P. Ball, M. Beneke, V.M. Braun: Nucl. Phys.B452, 563 (1995);

    Article  ADS  Google Scholar 

  29. P. Ball, M. Beneke, V.M. Braun: Phys. Rev.D52, 3929 (1995);

    ADS  Google Scholar 

  30. M. Beneke, V.M. Braun: Phys. Lett.B348, 513 (1995);

    Article  ADS  Google Scholar 

  31. C.N. Lovett-Turner, C.J. Maxwell: Nucl. Phys.B452, 188 (1995)

    Article  ADS  Google Scholar 

  32. P. Aurenche, R. Baier, A. Douiri, M. Fontannaz, D. Schiff: Nucl. Phys.B286, 553 (1987)

    Article  ADS  Google Scholar 

  33. J.F. Owens: Phys. Lett.B266, 126 (1991)

    Article  ADS  Google Scholar 

  34. J.F. Owens: Phys. Rev.D19, 3279 (1979);

    ADS  Google Scholar 

  35. J.F. Owens, E. Reya, M. Ghick: Phys. Rev.D18, 1501 (1978)

    ADS  Google Scholar 

  36. J. Binnewies, G. Kramer, B.A. Kniehl: DESY preprint DESY-95-048, March 1995

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahin S. Agaeva.

Additional information

Strictly speaking,\(\Phi _M (x, \hat Q^2 )\) is a hadron distribution amplitude and it differs from a hadron wave function; the former can be obtained by integrating the corresponding wave function over partons' transverse momenta up to the factorization scale\(\hat Q^2 \). But in this paper we use these two terms on the same footing

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agaeva, S.S. Single meson photoproduction and IR renormalons. Eur. Phys. J. C 1, 321–331 (1998). https://doi.org/10.1007/BF01245821

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01245821

Keywords

Navigation