Skip to main content
Log in

Analytical modeling of the cogging torque in permanent magnet motors

Analytische Modellierung der Einrastmomente in permanentmagneterregten Motoren

  • Published:
Electrical Engineering Aims and scope Submit manuscript

Contents

An exact analytical description of the magnetic field in idealized models of surface mounted permanent magnet motors is presented. An approximate closed form solution is derived therefrom. As to the cogging torque results obtained from measurements, finite element calculations, exact and approximate analytical modeling are compared with each other. The mutual dependency of armature geometry and magnetization pattern as to their influence on the cogging torque is discussed.

Übersicht

Es wird eine exakte analytische Beschreibung des Magnetfeldes für idealisierte Modelle von permanentmagneterregten Motoren mit am Lufspalt montierten Magneten angegeben. Daraus wird eine näherungsweise Lösung in geschlossener Form abgeleitet. Bezüglich der Einrastmomente werden Ergebnisse von Messungen, Finite-Elemente-Berechnungen, exakter und näherungsweiser analytischer Modellierung miteinander verglichen. Die wechselseitige Abhängigkeit von Ankergeometrie und Magnetisierungsmuster bezüglich ihres Einflusses auf die Einrastmomente wird diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

vector potential

A :

z-component of the vector potential

A I,A II,A III :

z-component of the vector potential in slot numberl (region I), airgap (region II), and magnet (region III)

a I0 ,a II0 ,a III0 :

average value ofA I,A II,A III

c l m :

fourier series coefficients ofA I

a II k ,b II k ,c II k ,d II k :

fourier series coefficients ofA II

a III k ,c III k ,a III n ,c III n :

fourier seris coefficients ofA III

B :

flux density

B x ,B y :

flux density components inxy-coordinates

B r ,B ϕ :

flux density components in rϕ-coordinates

B I r ,B I ϕ :

flux density components in slot numberl (region I)

B II r ,B II ϕ :

flux density components in airgap (region II)

B III r ,B III ϕ :

flux density components in magnet (region III)

H :

magnetic field

H x ,H y :

magnetic field components inxy-coodinates

H r ,H ϕ :

magnetic field components inrϕ-coordinates

H I ϕ ,H II ϕ ,H III ϕ :

ϕ-component of the magnetic field in slot numberl (region I), airgap (region II), and magnet (region III)

M :

magnetization

M x ,M y :

magnetization components inxy-coordinates

M r ,M ϕ :

magnetization components inrϕ-coordinates

M k :

fourier series coefficients ofM r (magnet reference frame)

a M k ,c M k ,a M n ,c M n :

fourier series coefficients ofM r (armature reference frame)

e k ,e n :

auxiliary quantities describingM r

μ0 :

permeability of air

B R :

remanence of permanent magnet

ε:

width of transition zones between north and south poles divided by pole pitch (cf. Fig. 7)

P m :

number of magnet pole pairs

P :

fundamental order of cogging torque, equal to the smalles common multiple of 2P m andQ s

Q s :

number of slots

x, y :

cartesian coodinates, armature reference frame

r,ϕ:

polar coordinates, armature reference frame

θ:

angle of rotation of the magnet

e x,e y,e z :

unit vectors (cartesian coordinates)

e r,e ϕ,e z :

unit vectors (polar coordinates)

r 1,x 1 :

radius/position of slot bottom

r 2,x 2 :

radius/position of armature-airgap interface

r 3,x 3 :

radius/position of magnet-airgap interface

r 4,x 4 :

radius/position of magnet-yoke interface

ϕpyl :

lower border of slot numberl (xy/rϕ-coordinates)

w 1,W 1 :

width of slot numberl (xy/rϕ-coordinates)

w, W :

slot width for symmetric armature (xy/rϕ-coordinates)

α:

tooth width divided by tooth pitch (cf. Eq. (61))

f(k, n, ±):

auxiliary functions describing the amplitude reduction of fourier series coefficients of field quantities due to slotting (cf. Eqs. (58), (59), and (60))

f(k,n,±) :

auxiliary functions describing the coupling between fourier series coefficients of field quantities due to slotting (cf. Eqs. (50) and (51))

R, S k (a,b), C k (a,b), T k (a,b) :

auxiliary functions defined in Table 1

L y :

length of linear motor

L :

motor axial length

T c :

cogging torque

T v :

fourier series coefficients of cogging torque

References

  1. Miller, T. J. E.: Brushless Permanent-Magnet and Reluctance Motor Drives. Oxford: Clarendon Press 1989

    Google Scholar 

  2. Kenjo, T.;Nagamori, S.: Permanent Magnet and Brushless DC Motors. Oxford: Clarendon Press 1985

    Google Scholar 

  3. Arita, T.; Takahashi, T.: Application of Rare Earth-Cobalt Plastic Magnet for Micro Motors. 8th Int. Workshop on Rare-Earth Magnets and their Appl., Dayton (Ohio) (1985) 55–66

  4. De La Ree, J.; Latorre, J.: Permanent Magnet Machines Torque Considerations. Conference Record of the 1988 IEEE Industry Applications Society Annual Meeting (1988) 32–37

  5. Li, T.;Slemon, G.: Reduction of Cogging Torque in Permanent Magnet Motors. IEEE Trans. Mag. 24 (1988) 2901–2903

    Google Scholar 

  6. Ackermann, B.;Janssen, J. H. H.;Sottek, R.;van Steen, R. I.: New technique for reducing cogging torque in a class of brushless DC motors. IEE Proceedings-B 139 (1992) 315–320

    Google Scholar 

  7. Zhu, Z. Q.;Howe, D.: Analytical Prediction of the Cogging Torque in Radial-field Permanent Magnet Brushles Motors. IEEE Trans. Mag. 28 (1992) 1371–1374

    Google Scholar 

  8. May, H.;Mosebach, H.;Weh, H.: Polkraftschwankungen durch Ankernutung am Beispeil des synchronen Langstatormotors. Arch. Elektrotech 59 (1977) 291–296

    Google Scholar 

  9. Andresen, E. Ch.; Xie, J.: Slot Induced Torque Pulsations in Permanent Magnet Synchronous Motors. International Conference on the Evolution and Modern Aspects of Synchronous Machines, Zürich (1991) 1066–1070

  10. Mohr, A.: Die Verringerung der Flußschwankungen in kleinen Gleichstrommotoren. Bosch Technische Berichte 4 (1973) 131–139

    Google Scholar 

  11. Koch, J.: Permanentmagnetische Polfühligkeit in Gleichstrommotoren mit Ferroxdure-Segmenten. Valvo Berichte 20 (1976) 13–22

    Google Scholar 

  12. Goto, M.;Kobayashi, K.: An Analysis of the Cogging Torque of a DC Motor and a New Technique of Reducing the Cogging Torque. Electrical Engineering in Japan 103 (1983) 113–120

    Google Scholar 

  13. De La Ree, J.; Boules, N.: Torque Production in Permanent-Magnet Synchronous Motors. Conference Record of the 1987 IEEE Industry Applications Society Annual Meeting (1987) 15–20

  14. Ittstein, H. G.: Analytische Berechnung der Rastmomente eines zweipoligen dauermagneterregten Gleichstrommotors. Arch. Elektrotech 75 (1992) 283–292

    Google Scholar 

  15. Binns, K. J.: Cogging torques in induction machines. Proc. IEE 115 (1968) 1783–1790

    Google Scholar 

  16. Jackson, J. D.: Classical Electrodynamics, Second Edition. New York: Wiley 1975

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ackermann, B., Sottek, R. Analytical modeling of the cogging torque in permanent magnet motors. Electrical Engineering 78, 117–125 (1995). https://doi.org/10.1007/BF01245643

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01245643

Keywords

Navigation