Skip to main content
Log in

A scientific rationale for protective therapy in Parkinson's disease

  • Full Papers
  • Published:
Journal of Neural Transmission / General Section JNT Aims and scope Submit manuscript

Summary

The desire to introduce neuroprotective therapy for Parkinson's disease has begun to focus attention on pathogenetic mechanisms responsible for cell death. Considerable theory and some evidence have now accumulated to suggest that factors related to oxidative stress, mitochondrial bioenergetic defects, excitatory neurotoxicity, calcium cytotoxicity, and trophic factor deficiencies acting either singularly or in combination may contribute to the development of cell death in Parkinson's disease. A better understanding of the specific pathogenetic mechanism involved in cell degeneration might provide a scientific basis for testing a putative neuroprotective therapy. This chapter reviews the theory and evidence in support of these different mechanisms and possible strategies that might provide neuroprotection and interfere with the natural progression of Parkinson's disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebischer P, Winn SR, Galletti PM (1988) Transplantation of neural tissue in polymer capsules. Brain Res 364–368

  • Agnati L, Fuxe K, Calza L, et al (1983) Gangliosides increase the survival of lesioned nigral dopamine neurons and favour the recovery of dopaminergic synaptic function instriatum of rats by collateral sprouting. Acta Physiol Scand 119: 347–363

    Google Scholar 

  • Albin RL, Greenamyre JT (1992) Alternative excitotoxic hypotheses. Neurology 42: 733–738

    Google Scholar 

  • Albin RL, Young Ab, Penney JB, et al (1990) Abnormalities of striatal projection neurons and N-methyl-D-aspartate receptors in presymptomatic Huntington's disease. N Engl J Med 322: 1293–1298

    Google Scholar 

  • Arends MJ, Morris RG, Wyllie AH (1990) Apoptosis — the role of the endonuclease. Am J Pathol 136: 593–608

    Google Scholar 

  • Aust FD, White BC (1985) Iron chelation prevents tissue injury following ischemia. Adv Free Rad Biol Med 1: 1–17

    Google Scholar 

  • Beal MF (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol 31: 119–130

    Google Scholar 

  • Beal MF, Kowall NW, Elisson DW, et al (1986) Replication of the neurochemical eharacteristics of Huntington's disease by quinolinic acid. Nature 321: 168–171

    Google Scholar 

  • Beal MF, Ferrante RJ, Swartz KJ, Kowall NW (1991) Chronic quinolinic acid lesions in rats closely mimic Huntington's disease. J Neurosci 11: 1649–1659

    Google Scholar 

  • Beal MF, Schartz KJ, Hyman BT, et al (1991) Aminooxyacetic acid results in excitotoxic lesions by a novel indirect mechanism. J Neurochem 57: 1068–1073

    Google Scholar 

  • Beckman JS, Beckman TW, Chen J, et al (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87: 1620–1624

    Google Scholar 

  • Bellomo G, Perotti M, Taddei F, et al (1992) Tumor necrosis factor a induces apoptosis in mammary adenocarcinoma cell by an increase in intranuclear free Ca2+ concentration and DNA fragmentation. Cancer Res (in press)

  • Ben-Shachar D, Eshel G, Finberg JPM, Youdim M (1991) The iron chelator desferrioxamine (desferal) retards 6-hydroxy dopamine-induced degeneration of nigral striatal dopamine neurons. J Neurochem 56: 1441–1444

    Google Scholar 

  • Bernsen PLJA, Gabreels FJM, Ruitenbeek W, et al (1991) Successful treatment of pure myopathy, associated with complex I deficiency with riboflavin and carnitine. Arch Neurol 48: 334–338

    Google Scholar 

  • Birkmayer W, Knoll J, Riederer P, Youdim M, etal (1985) Increased life expectancy resulting from addition of L-deprenyl to Madopar treatment in Parkinson's disease: a long-term study. J Neural Transm 64: 113–127

    Google Scholar 

  • Blake DR, Winyard P, Lonec J, et al (1985) Cerebral and occular toxicity induced by desferioxamine. Q J Med 219: 345–355

    Google Scholar 

  • Bodis-Wollner I, Chung E, Chilardi MF, Glover A, Onofrj M, Pasik P, Samson Y (1991) Acetyl-levo-carnitine protects against MPTP-induced parkinsonism in primates. J Neural Transm [PD Sect] 3: 63–72

    Google Scholar 

  • Bohn MC, Cupit L, Marciana F, et al (1987) Adrenal medulla grafts enhance recovery of striatal dopaminergic fibers. Science 237: 913–915

    Google Scholar 

  • Braughler JM, Pregenzer JF, Chase RL, Duncan LA, Jacobsen EJ, McCall JM (1987) Novel 21-aminosteroids as potent inhibitors of iron-dependent lipid peroxidation. J Biol Chem 262: 10438–10440

    Google Scholar 

  • Burkitt MJ, Fichett M, Gilberg BC (1988) Free radical damage to nucleic acid components initiated by the Fenton reaction: an E.S.R. study. In: Hayaishi O, Niki E, Kondo M (eds) Medical biochemical and chemical aspects of free radicals. Elsevier, Amsterdam, pp 63–70

    Google Scholar 

  • Burton GW, Ingold KU (1984) B-carotene: an unusual type of lipid antioxidant. Science 224: 569–573

    Google Scholar 

  • Calne DB, Langston JW (1983) Aetiology of Parkinson's disease. Lancet ii: 1457–1459

    Google Scholar 

  • Cantoni O, Sestili O, Catabeni F, et al (1990) Calcium chelator Quin 2 prevents hydrogenperoxide-induced DNA breakage and cytotoxicity. Eur J Biochem 182: 209–212

    Google Scholar 

  • Carafoli E (1989) Intracellular Ca2+ homeostasis. Annu Rev Biochem 56: 395–433

    Google Scholar 

  • Carafoli E (1991) Calcium pump of the plasma membrane. Physiol Rev 71: 129–153

    Google Scholar 

  • Chan P, DeLanney LE, Irwin I, et al (1991) Rapid ATP loss caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mourse brain. J Neurochem 57: 348–351

    Google Scholar 

  • Chiamulera C, Costa S, Reggiani A (1990) Effects of NMDA and strychnine-insensitive glycine site antagonists on NMDA-mediated convulsions and learning. Psychopharmacology 102: 551–552

    Google Scholar 

  • Chiba K, Trevor A, Castagnoli N Jr (1984) Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 120: 547–578

    Google Scholar 

  • Choi DW (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11: 465–469

    Google Scholar 

  • Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623–634

    Google Scholar 

  • Choi DW (1990) Cerebral hypoxia: some new approaches and unanswered questions. J Neurosci 10: 2493–2501

    Google Scholar 

  • Choi DW (1990) Methods for antagonizing glutamate neurotoxicity. Cerebrovasc Brain Metab Rev 2: 105–147

    Google Scholar 

  • Cochrane CJ, Schraufstatter I, Hyslop P, Jackson J (1988) Cellular and biochemical events in oxidant injury. In: Halliwell B (ed) Oxygen radicals and tissue injury. FASEB: 49–54

  • Cohen G, Pasik P, Cohen B, et al (1985) Pargyline and deprenyl prevent the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in monkeys. Eur J Pharmacol 106: 209–210

    Google Scholar 

  • Coyle JT, Schwarcz R (1976) Lesions of striatal neurons with kainic acid provides a model for Huntington's chorea. Nature 263: 244–246

    Google Scholar 

  • Date I, Notter MFD, Felten SY, Felten DL (1990) MPTP-treated young mice but not aging mice show partial recovery of the nigrostriatal dopaminergic system by stereotaxic injection of acidic fibroblast growth factor (aFGF). Brain Res 526: 156–160

    Google Scholar 

  • Dawson VL, Dawson TM, London ED, et al (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical culture. Proc Natl Acad Sci USA 88: 6368–6371

    Google Scholar 

  • Dawson TM, Dawson VL, Snyder SH (1992) A novel neuronal messenger molecule in brain: the free radical, nitric oxide. Ann Neurol 32: 297–311

    Google Scholar 

  • Dexter DT, Carter CJ, Wells FR, et al (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J Neurochem 52: 381–389

    Google Scholar 

  • Dexter DT, Wells FR, Lees AJ, et al (1989) Increased nigral iron content and alterations in other metal iron occuring in brain in Parkinson's disease. J Neurochem 52: 1830–1836

    Google Scholar 

  • During MJ, Geller AI, Deutch AY, Neve RL, O'Malley KL (1991) Expression of human tyrosine hydroxylase and unregulated signal transduction enzymes in neurons in the mammalian brain, from HSV-1 vectors. Soc Neurosci Abstr 17: 56.8

    Google Scholar 

  • Dypbukt JM, Thor H, Nicotera P (1990) Intracellular Ca2+ chelators prevent DNA damage and protect hepatoma 1c1c7 cells from quinone-induced cell killing. Free Radic Res Commun 8: 347–354

    Google Scholar 

  • Ferrari G, Minozzi MC, Toffano G, Leon A, Skaper SD (1989) Basic fibroblast growth factor promotes the survival and development of mesencephalic neurons in culture. Dev Biol 133: 140–147

    Google Scholar 

  • Floyd RA (1990) Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB 4: 2587–2597

    Google Scholar 

  • Frei B, England L, Ames BN (1989) Ascorbate is an out-standing antioxidant in human blood plasma. Proc Natl Acad Sci USA 86: 6377–6381

    Google Scholar 

  • Gage FH (1990) Intracerebral grafting of genetically modified cells acting as biological pumps. Trends Pharmacol Sci II: 437–439

    Google Scholar 

  • Gelmers HJ, Gorter K, DeWeerdt CJ, Wiezer HJA (1988) A controlled trial of nimodopine in acute ischemic stroke. N Engl J Med 318: 203–207

    Google Scholar 

  • Glover V, Sandier M, Owen F, Riley GJ (1977) Dopamine is a monoamine B substrate in man. Nature 265: 80–81

    Google Scholar 

  • Good PF, Olanow CW, Perl DP (1992) Neuromelanin containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson's disease. A LAMMA study. Brain Res (in press)

  • Granger DL, Lehninger AL (1982) Sites of inhibition of mitochondrial electron transport in macrophage-injured neoplastic cells. J Cell Biol 95: 527–535

    Google Scholar 

  • Hadjiconstantinou M, Mariani AP, Neff NH (1989) GM1 ganglioside-induced recovery of nigrostriatal dopaminergic neurons after MPTP: an immunohistochemical study. Brain Res 484: 297–303

    Google Scholar 

  • Halliwell B (1989) Protection against tissue damage in vivo by deferrioxamine. What is its mechanism of action? Free Radic Biol Med 7(6): 645–651

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1985) Oxygen radicals and the nervous system. TINS 8: 22–29

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1988) Iron as a biological pro-oxidant. ISI Atlas Sci Biochem 1: 48–52

    Google Scholar 

  • Hamburger V, Levi-Montalcini R (1949) Proliteration, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J Exp Zool 111: 457–502

    Google Scholar 

  • Hefti F (1986) Nerve growth factor (NGF) promotes survival of septal cholinergic neurons after fimbrial transection. J Neurosci 6: 2155–2162

    Google Scholar 

  • Heikkila RE, Nicklas WJ, Vyas I, Duvoisin RC (1985) Dopaminergic toxicity of rotenone and the MPP ion after their stereotaxic administration to rats: implications for the mechanism of MPTP toxicity. Neurosci Lett 682: 389–394

    Google Scholar 

  • Helgren ME, Wong V, Kennedy M, et al (1992) Ciliary neurotrophic factor (CNTF) slows the progression of motor dysfunction in the Mnd mouse. Neurology 42(3)

  • Holmlund TH, Mitsomoto H, Greene T, et al (1992) The effect of ciliary neurotrophic factor (CNTF) on spontaneously degenerating motor neurons in Wobbler mice. Neurology 42(3): 369

    Google Scholar 

  • Hyman C, Hofer M, Barde Y, et al (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350: 230–232

    Google Scholar 

  • Ihara Y, Namba R, Kuroda S, et al (1989) Mitochondrial encephalopathy (MELAS): pathological study and successful therapy with coenzyme Q 10 and idebenone. J Neurol Sci 90: 263–271

    Google Scholar 

  • Ikebe S, Tankaka M, Ohno K, et al (1990) Increase of deleted mitochondria DNA in the striatum in Parkinson's disease and senescence. Biochem Biophys Res Commun 170: 1044–1048

    Google Scholar 

  • Ingold KU, Webb AC, Witter D, et al (1987) Vitamin E remains the major lipid-soluable, chain-breaking antioxidant in human plasma even in individuals suffering severe vitamin E deficiency. Arch Biochem Biophys 259: 224–225

    Google Scholar 

  • Jellinger K, Kienzl E, Rumpelmair G, Riederer P, Stachelberger H, Ben-Shachar D, Youdim MBH (1992) Iron-melanin complex in substantia nigra of parkinsonian brains: an X-ray microanalysis. J Neurochem 59: 1168–1171

    Google Scholar 

  • Jewelll SA, Bellomo G, Thor H, et al (1982) Bleb formation in hepatocytes during drug metabolism is caused by disturbances in thiol and calcium ion hemeostasis. Science 217: 1257–1259

    Google Scholar 

  • Jones DP, McConkey DJ, Nicotera P, Orrenius S (1989) Calcium-activated DNA fragmentation in rat liver nuclei. J Biol Chem 264: 6398–6403

    Google Scholar 

  • Kanner BI, Schuldliner S (1987) Mechanism of transport and storage of neurotransmitters. CRC Crit Rev Biochem 22: 1–18

    Google Scholar 

  • Keinanen K, Wisden W, Sommer B, et al (1990) A family of AMPA-selective glutamate receptors. Science 249: 556–560

    Google Scholar 

  • Kindt MV, Youngster SK, Sonsalla PK, et al (1988) Role for the monoamine oxidase A (MAO-A) in the bioactivation and nigral striatal dopaminergic neurotoxicity of the MPTP analog 2'ME-MPTP. Eur J Pharmacol 146: 313–318

    Google Scholar 

  • Klockgether T, Turski L (1990) NMDA antagonist potentiate antiparkinsonian actions of L-dopa in monoamine-depleted rats. Ann Neurol 28: 539–546

    Google Scholar 

  • Koek W, Colpaert C (1990) Selective blockade of N-methyl-D-aspartate (NMDA)-induced convulsions by NMDA antagonists and putative glycine antagonists: relationship with phencylidine-like behavioral effects. J Pharmacol Exp Ther 252: 349–357

    Google Scholar 

  • Kordower JH, Fiandaca MS, Notter MFD, et al (1990) Peripheral nerve provides NFG-like trophic support for grafted Rhesus adrenal chromaffin cells. J Neurosurg 73: 418–428

    Google Scholar 

  • Kordower JH, Cochran E, Penn R, et al (1991) Putative chromaffin cell survival and enhanced host derived TH-fiber innervation following a functional adrenal medulla autograft for Parkinson's disease. Ann Neurol 29: 405–412

    Google Scholar 

  • Längsten JW, Irwin I, Langston EB, Forno LS (1984) Pargyline prevents MPTP-induced parkinsonism in primates. Science 225: 1480–1482

    Google Scholar 

  • Linnane Aw, Baumer A, Maxwell RJ, et al (1990) Mitochondrial gene mutation: the aging process and degenerative diseases. Biochem Int 22: 1067–1076

    Google Scholar 

  • Lucas DR, Newhouse JP (1957) The toxic effect of sodium L-glutamate on the inner layers of the retina. Arch Opthalmol 58: 193–201

    Google Scholar 

  • Mann DMA, Yates PO (1983) Possible role of neuromelanin in the pathogenesis of Parkinson's disease. Mech Aging Dev 21: 193–203

    Google Scholar 

  • Maragos WF, Greenamyre JT, Penny JB, Young AB (1987) Glutamate dysfunction in Alzheimer's disease: an hypothesis. Trends Neurosci 10: 65–68

    Google Scholar 

  • McGeer EG, McGeer PL (1976) Duplication of biochemical changes of Huntington's chorea by intrastriatal injections of glutamic and kainic acids. Nature 263: 517–519

    Google Scholar 

  • Mirabelli F, Salis A, Vairetti M, et al (1989) Cytoskeletal alterations in human platelets exposed to oxidative stress are mediated by oxidative and Ca2+-dependent mechanisms. Arch Biochem Biophys 270: 478–488

    Google Scholar 

  • Mizuno Y, Ohta S, Tanaka M, et al (1989) Deficiences in complex I subunits of the respiratory chain in Parkinson's disease. Biochem Biophys Res Commun 163: 1450–1455

    Google Scholar 

  • Monaghan DT, Olverman HJ, Nguyen L, et al (1988) Two classes of N-methyl-D-aspartate recognition sites: differential distribution and differential regulation by glycine. Proc Natl Acad Sci USA 85: 9836–9840

    Google Scholar 

  • Monaghan DT, Bridges RJ, Cotman CW (1989) The excitatory amino acid receptors: their classes, pharmacology and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 29: 365–402

    Google Scholar 

  • Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43: 109–142

    Google Scholar 

  • Nicholls D, Attwell D (1990) The release and uptake of excitatory amino acids. Trends Pharmacol Sci 11: 462–468

    Google Scholar 

  • Nicotera P, McConkey DJ, Jones DP, Orrenius S (1989) ÁTP stimulated Ca2+ uptake and increases the free Ca2+ concentration in isolated rate liver nuclei. Proc Natl Acad Sci USA 86: 453–457

    Google Scholar 

  • Nicotera P, Bellomo G, Orrenius S (1990) The role of Ca2+ in cell killing. Chem Res Toxicol 3: 484–494

    Google Scholar 

  • Novelli A, Reilly JA, Lysko PG, Henneberry RC (1988) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 451: 205–212

    Google Scholar 

  • Olanow CW (1990) Oxidation reactions in Parkinson's disease. Neurology 40: 32–37

    Google Scholar 

  • Olanow CW (1992) Protective therapy for Parkinson's disease. In: Olanow CW, Leiberman A (eds) The scientific basis for the treatment of Parkinson's disease. Parthenon Publishing, London, pp 225–256

    Google Scholar 

  • Olanow CW, Calne D (1992) Does deprenyl monotherapy in Parkinson's disease act by symptomatic or protective mechanisms? Neurology 42(4): 13–36

    Google Scholar 

  • Olney JW (1969) Brain lesion, obesity and other disturbances in mice treated with monosodium glutamate. Science 164: 719–721

    Google Scholar 

  • Olson L, Backlund E, Ebendal T, et al (1991) Intraputaminal infusion of nerve growth factor to support adrenal medullary autografts in Parkinson's disease: one year follow-up of first clinical trial. Arch Neurol 48: 373–381

    Google Scholar 

  • Orrenius S, Burkitt MJ, Kass GEN, Dypbukt JM, Nicotera P (1992) Calcium ions and oxidative cell injury. Ann Neurol (in press)

  • Otto D, Unsicker K (1990) Basic FGF reverses chemical and morphological deficits in the nigrostriatal system of MPTP-treated mice. J Neurosci 10: 1912–1921

    Google Scholar 

  • Parker WD, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Ann Neurol 26: 719–723

    Google Scholar 

  • Pellegrini-Giampietro DE, Cherichi G, Alesiani M, Carla V, Moroni F (1988) Excitatory amino acid release from rat hippocampal slices as a consequence of free-radical formation. J Neurochem 51: 1961–1963

    Google Scholar 

  • Perry TL, Godin DV, Hansen S (1982) Parkinson's disease: a disorder due to nigral glutathione deficiency? Neuroscience 33: 305–310

    Google Scholar 

  • Plaitakis A (1982) The olivopontocerebellar atrophies. Semin Neurol 2: 334–342

    Google Scholar 

  • Plaitakis A (1990) Glutamate dysfunction and selective motor neurons degeneration in amyotrophic lateral sclerosis: a hypothesis. Ann Neurol 28: 3–8

    Google Scholar 

  • Przyrembel H (1987) Therapy of mitochondrial disorders. J Inherited Metab Dis 10: 129–146

    Google Scholar 

  • Ramsey RR, Krueger MJ, Youngster Sk, et al (1991) Interaction of 1-methyi-4-phenyl-pyridinium ion (MPP+) and its analogs with the rotenone/piericidin binding site of NADH dehydrogenase. J Neurochem 56: 1184–1190

    Google Scholar 

  • Richter C, Park J-W, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85: 6465–6467

    Google Scholar 

  • Sadrzadeh SM, Eaton JW (1988) Hemoglobin-mediated oxidant damage to the central nervous system requires endogenous ascorbate. J Clin Invest 82: 1510–1515

    Google Scholar 

  • Schapira AHV, Cooper JM, Detter D, et al (1990) Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem 54: 823–827

    Google Scholar 

  • Schneider JS, Yuwiler A (1989) GM1 ganglioside treatment promotes recovery of striatal dopamine concentrations in the mouse model of MPTP-induced parkinsonism. Exp Neurol 105: 177–183

    Google Scholar 

  • Schneider JS, Pope A, Simpson K, et al (1992) Recovery from experimental parkinsonism in primates with GM1 ganglioside treatment. Science 256: 843–846

    Google Scholar 

  • Schwarcz R, Whetsell WO, Mangano RM (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219: 316–318

    Google Scholar 

  • Sendtner M, Kreutzberg GW, Thoenen H (1990) Ciliary neurotrophic factor prevents the degeneration of motor neurons after axomotomy. Nature 345: 440–441

    Google Scholar 

  • Sengstock GJ, Olanow CW, Dunn AJ, et al (1992) Iron induces degeneration of substantia nigra neurons. Brain Res Bull 28: 645–649

    Google Scholar 

  • Sheardown MJ, Nielson EO, Hansen AJ, Jacobsen P, Honore T (1990) 2,3-D,hydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. Science 247: 571–574

    Google Scholar 

  • Shoffner JM, Watts RL, Juncos JL, Torroni A, Wallace DC (1991) Mitochondrial oxidative phosphorylation defects in Parkinson's disease. Ann Neurol 30: 332–339

    Google Scholar 

  • Somylo AP, Bond M, Somylo AV (1985) Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo. Nature 14: 622–625

    Google Scholar 

  • Sonsalla PK, Nicklas WJ, Heikkila RE (1989) Role of excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity. Science 243: 394–400

    Google Scholar 

  • Spencer PS, Ludolph AC, Divivedi MP, et al (1986) Lathyrism: evidence for role of neuroexcitatory amino acid BOAA. Lancet ii: 1066–1067

    Google Scholar 

  • Stockli KA, Lottspeich F, Sendtner M, et al (1989) Molecular cloning, expression and regional distribution of rat ciliary neurotrophic factor. Nature 342: 920–923

    Google Scholar 

  • Stromberg I, Herrera-Marschitz M, Ungerstedt U, et al (1985) Chronic implants of chromaffin tissue into the dopamine-denervated striatum. Effects of NGF on graft survival, fiber growth and rotational behavior. Exp Brain Res 60: 335–349

    Google Scholar 

  • Tetrud JW, Langston JW (1989) The effect of Deprenyl (Selegiline) on the natural history of Parkinson's disease. Science 245: 519–522

    Google Scholar 

  • The Parkinson's Study Group (1989) Effect of Deprenyl on the progression of disability in early Parkinson's disease. NEJM 321: 1364–1371

    Google Scholar 

  • The Parkinson Study Group (1993) Effects of tocopherol and deprenyl on the progression of disability in early Parkinson's disease. N Engl J Med 328: 176–183

    Google Scholar 

  • Turski L, Bressler K, Retting K-J, Loeschmann P-A, Eachtel H (1991) Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature 349: 414–418

    Google Scholar 

  • Tsien RW, Tsien RY (1990) Ca2+ channels, stores and oscillations. Annu Rev Cell Biol 6: 715–760

    Google Scholar 

  • Watkins JC, Evans RJ (1981) Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol 21: 165–204

    Google Scholar 

  • Westermann R, Johannsen M, Unsicker K, Grothe C (1990) Basic fibroblast growth factor (bFGF) immunoreactivity is present in chromaffin granules. J Neurochem 55: 282–292

    Google Scholar 

  • Westlund KN, Denney RM, Kochersperger LM, Rose RM, Abell CW (1985) Distinct monoamine oxidase A and B populations in primate brain. Science 230: 181–183

    Google Scholar 

  • Williams LR, Varon S, Peterson GM, et al (1986) Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc Natl Acad Sci USA 83: 9231–9235

    Google Scholar 

  • Yamada T, McGeer PL, Baimbridge KG, McGeer EG (1990) Relative sparing in Parkinson's disease of substantia nigra dopamine neurons containing calbindin-D28 k. Brain Res 526: 303–307

    Google Scholar 

  • Young Ab, Greenamyre JT, Hollingsworth Z, et al (1988) NMDA receptor losses in putamen from patients with Huntington's disease. Science 241: 981–983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olanow, C.W. A scientific rationale for protective therapy in Parkinson's disease. J. Neural Transmission 91, 161–180 (1993). https://doi.org/10.1007/BF01245230

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01245230

Keywords

Navigation