The critical order of vanishing of automorphicL-functions with large level

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S. Böcherer, R. Schulze-Pillot: The Dirichlet series of Koecher and Maass and modular forms of weight 3/2. Math. Z.209 (1992) 273–287

    Google Scholar 

  2. 2.

    J.-M. Deshouillers, H. Iwaniec: Kloosterman sums and Fourier coefficients of cusp forms. Invent. Math.70 (1982) 219–288

    Google Scholar 

  3. 3.

    W. Duke, J. Friedlander, H. Iwaniec: Bounds for automorphicL-functions. II. Invent. Math.115 (1994) 219–239

    Google Scholar 

  4. 4.

    D. Goldfeld, J. Hoffstein, D. Lieman: An effective zero free region, Appendix to: Coefficeints of Maass forms and the Siegel zero Ann. Math. (to appear)

  5. 5.

    F. Gouvêa, B. Mazur: The square-free sieve and the rank of elliptic curves. J. AMS4 (1991) 1–23

    Google Scholar 

  6. 6.

    B.H. Gross: Heights and the special values ofL-series. In: Number Theory, Proceedings of the 1985 Montreal Conference held June 17–29, 1985, CMS Conference Proceedings, Vol. 7, 1987, 115–187

  7. 7.

    J. Hoffstein, P. Lockhart: Coefficients of Maass forms and the Siegel zero. Ann. Math. (to appear)

  8. 8.

    H. Iwaniec: On the order of vanishing of modularL-functions at the critical point. In: Sém. Th. des Nombres, Bordeaux2 (1990) 365–376

  9. 9.

    W. Luo: On the nonvanishing of Rankin SelbergL-functions. Duke Math. J69 (1993) 411–427

    Google Scholar 

  10. 10.

    B. Mazur: Modular curves and the Eisenstein ideal. IHES Publ. Math.47 (1977) 33–186

    Google Scholar 

  11. 11.

    B. Mazur: On the arithmetic of special values ofL-functions. Invent. Math.55 (1979) 207–240

    Google Scholar 

  12. 12.

    D.E. Rohrlich: OnL-functions of elliptic curves and cyclotomic towers. Invent. Math.75 (1984) 409–423

    Google Scholar 

  13. 13.

    D.E. Rohrlich:L-functions and division towers. Math. Ann.281 (1988) 611–632

    Google Scholar 

  14. 14.

    G. Shimura: Introduction to the arithmetic theory of automorphic functions. Publ. Math. Soc. Japan, Vol. 11. Tokyo-Princeton, 1971

Download references

Author information

Affiliations

Authors

Additional information

Oblatum 19-IX-1993 & 2-V-1994

Research supported in part by NSF Grant DMS-9202022.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duke, W. The critical order of vanishing of automorphicL-functions with large level. Invent Math 119, 165–174 (1995). https://doi.org/10.1007/BF01245178

Download citation

Keywords

  • Large Level
  • Critical Order