Skip to main content
Log in

Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain

  • Short Note
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

Significant differences in the content of iron (III) and total iron were found in post mortem substantia nigra of Parkinson's disease. There was an increase of 176% in the levels of total iron and 255% of iron (III) in the substantia nigra of the parkinsonian patients compared to age matched controls. In the cortex (Brodmann area 21), hippocampus, putamen, and globus pallidus there was no significant difference in the levels of iron (III) and total iron. Thus the changes in total iron, iron (III) and the iron (II)/iron (III) ratio in the parkinsonian substantia nigra are likely to be involved in the pathophysiology and treatment of this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ben-Shachar D, Ashkenazi A, Youdim MBH (1986) The long term consequences of early iron deficiency. Int J Dev Neurosci 4: 81–88

    Google Scholar 

  • Birkmayer W, Riederer P (1985) Die Parkinson-Krankheit, 2nd edn. Springer, Wien New York

    Google Scholar 

  • Birkmayer W, Birkmayer JGD (1986) Iron, a new aid in the treatment of Parkinson patients. J Neural Transm 67: 287–292

    Google Scholar 

  • Carlsson A (1974) The in vivo estimation of rates of tryptophan and tyrosine hydroxylation: effects of alterations in enzyme environment and neuronal activity. In: Wolstenholme GEW, Fitzsimons DW (eds) Aromatic amino acids in the brain. Elsevier, Excerpta Medica, Amsterdam London New York, pp 126–134

    Google Scholar 

  • Crichton RR (1979) Interaction between iron metabolism and oxygen activation. In: Oxygen free radicals and tissue damage. Ciba Foundation Symposium. Excerpta Medica, Amsterdam, p 57

    Google Scholar 

  • Dexter DT, Jenner P, Marsden CD (1987 a) Alterations in the content of iron and other metal ions in Parkinsonian brain. Br J Pharmacol 91: P 427

    Google Scholar 

  • Dexter DT, Wells FR, Agid F, Agid Y, Lees AJ, Jenner P, Marsden CD (1987 b) Increased nigral iron content in postmortem parkinsonian brain. Lancet ii: 1219–1220

    Google Scholar 

  • Donaldson J, Cloutier T, Minnich JL, Barbeau A (1974) Trace metals and biogenic amines in rat brain. In: McDowell F, Barbeau A (eds) Second Canadian-American Conference on Parkinson's disease. Adv Neurol 5: 245–252

  • Drayer BP, Olanow W, Burger P, Johnson GA, Herfkens R, Riederer S (1986) Parkinson plus syndrome: diagnosis using high field MR imaging of brain iron. Radiology 159: 493–498

    Google Scholar 

  • Earle KM (1968) Studies on Parkinson's disease including X-ray fluorescent spectroscopy of formalin fixed brain tissue. J Neuropathol Exp Neurol 27: 1–14

    Google Scholar 

  • Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Wien Klin Wochenschr 38: 1236–1239

    Google Scholar 

  • Fischer PA, Schneider E, Jacobi P (1983) Klinische Bilder des Parkinson-Syndroms und ihre Verläufe. In: Gänshirt H, Berlit P, Haack G (eds) Pathophysiologie, Klinik und Therapie des Parkinsonismus. Editiones “Roche”, Basle, pp 51–65

    Google Scholar 

  • Greiner AC, Chan SC, Nicolson GA (1975) Human brain contents of calcium, copper, magnesium, and zinc in some neurological pathologies. Clin Chim Acta 64: 211–213

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1985) Free radicals in biology and medicine. Calendon Press, Oxford

    Google Scholar 

  • Ikeda M, Levitt M, Udenfriend S (1965) Hydroxylation of phenylalanine by purified preparations of adrenal and brain tyrosine hydroxylase. Biochem Biophys Res Commun 18: 482–488

    Google Scholar 

  • Kaufman S (1977) Mixed function oxygenases—general considerations. In: Usdin E, Weiner N, Youdim MBH (eds) Structure and function of monoamine enzymes. Marcel Dekker Inc., New York Basle, pp 3–22

    Google Scholar 

  • Lloyd KG, Davidson L, Hornykiewicz O (1975) The neurochemistry of Parkinson's disease: effect of L-DOPA therapy. J Pharmacol Exp Ther 195: 453–464

    Google Scholar 

  • Nagatsu T, Kato T, Numata Y, Ihuta K, Sano M, Nagatsu I, Kondo Y, Inagaki S, Ilzuka R, Hori A, Narabayashi H (1977) Phenylethanolamine-N-methyltransferase and other enzymes of catecholamine metabolism in human brain. Clin Chim Acta 75: 221–232

    Google Scholar 

  • Nagatsu T, Namaguchi T, Koto T, Sugimoto T, Matsuura S, Akino M, Nagatsu I, Iizuka R, Narabayashi H (1981) Biopterin in human brain and urine from controls and parkinsonian patients: application of a new radioimmunoassay. Clin Chim Acta 109: 305

    Google Scholar 

  • Rausch WD, Hirata Y, Nagatsu T, Riederer P, Jellinger K (1988) Tyrosine hydroxylase activity in caudate nucleus from Parkinson's disease. Effects of iron and phosphorylating agents. J Neurochem 50: 202–208

    Google Scholar 

  • Riederer P, Rausch WD, Birkmayer W, Jellinger K, Seemann D (1978) CNS modulation of adrenal tyrosine hydroxylase in Parkinson's disease and metabolic encephalopathies. J Neural Transm [Suppl] 14: 121–131

    Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Kruzik P, Youdim MBH (1985) Dopaminforschung heute und morgen — L-DOPA in der Zukunft. In: Riederer P, Umek H (eds) L-DOPA-Substitution der Parkinson-Krankheit. Springer, Wien New York, pp 127–144

    Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Schmidt B, Youdim MBH (1988 a) Transition metals, ferritin, glutathione and ascorbic acid in Parkinsonian brains. J Neurochem, in press

  • Riederer P, Rausch WD, Schmidt B, Kruzik P, Konradi C, Sofic E, Danielczyk W, Fischer M, Ogris E (1988 b) Biochemical fundamentals of Parkinson's disease. Mount Sinai J Med 55: 21–28

    Google Scholar 

  • Rutledge JN, Hilal SK, Silver AJ, Defendini R, Fahn S (1987) Study of movement disorders and brain iron by MR. Am J Neuroradiol 8: 397–411

    Google Scholar 

  • Siedel J, Wahlefeld AW, Ziegenhorn J (1984) Improved, ferrozine-based reagent for the determination of serum iron (transferrin iron) without deproteinisation. Clin Chem 30: 975

    Google Scholar 

  • Switzer III RC (1982) Iron-rich areas of brain as targets for damage in certain induced and naturally occuring neurological disorders. In: Saltman P, Hegenauer J (eds) The biochemistry and physiology of iron. Elsevier, Amsterdam, pp 569–574

    Google Scholar 

  • Spatz H (1922) Über den Eisennachweis im Gehirn, besonders in Zentren des extrapyramidal-motorischen Systems. Z Ges Neurol Psychiat 77: 261–390

    Google Scholar 

  • Ule G, Völkl A, Berlet H (1974) Spurenelemente im menschlichen Gehirn. Z Neurol 206: 117–128

    Google Scholar 

  • Völkl A, Ule G (1972) Spurenelemente im menschlichen Gehirn. Z Neurol 202: 331–338

    Google Scholar 

  • Youdim MBH (1985) Brain iron metabolism: biochemicals and behavioural aspects in relation to dopaminergic neurotransmission. In: Lajtha A (ed) Handbook of neurochemistry, vol 10. Plenum Press, New York, pp 731–755

    Google Scholar 

  • Youdim MBH (1988) Iron in the brain: implications for Parkinson's and Alzheimer's diseases. Mount Sinai J Med 55: 97–102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sofic, E., Riederer, P., Heinsen, H. et al. Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J. Neural Transmission 74, 199–205 (1988). https://doi.org/10.1007/BF01244786

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01244786

Keywords

Navigation