Advertisement

Microchimica Acta

, Volume 99, Issue 3–6, pp 223–230 | Cite as

Principle and analytical applications of resonance lonization mass spectrometry

  • Hubertus Rimke
  • Günter Herrmann
  • Marita Mang
  • Christoph Mühleck
  • Joachim Riegel
  • Peter Sattelberger
  • Norbert Trautmann
  • Friedhelm Ames
  • Hans -Jürgen Kluge
  • Ernst -Wilhelm Otten
  • Dieter Rehklau
  • Wolfgang Ruster
  • Franz Scheerer
Original Papers

Abstract

Resonance ionization mass spectrometry (RIMS) is a very sensitive analytical technique for the detection of trace elements. This method is based on the excitation and ionization of atoms with resonant laser light followed by mass analysis. It allows element and, in some cases, isotope selective ionization and is applicable to most of the elements of the periodic table. A high selectivity can be achieved by applying three step photoionization of the elements under investigation and an additional mass separation for an unambiguous isotope assignment.

An effective facility for resonance ionization mass spectrometry consists of three dye lasers which are pumped by two copper vapor lasers and of a linear time-of-flight spectrometer with a resolution better than 2500. Each copper vapor laser has a pulse repetition rate of 6.5 kHz and an average output power of 30 W.

With such an apparatus measurements with lanthanide-, actinide-, and technetium-samples have been performed. By saturating the excitation steps and by using autoionizing states for the ionization step a detection efficiency of 4 × 10−6 and 2.5 × 10−6 has been reached for plutonium and technetium, respectively, leading to a detection limit of less than 107 atoms in the sample. Measurements of isotope ratios of plutonium samples were in good agreement with mass-spectrometric data. The high elemental selectivity of the resonance ionization spectrometry could be demonstrated.

Key words

resonance ionization mass spectrometry detection of trace elements actinides technetium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. V. Ambartsumian, V. S. Lethokov,Appl. Opt. 1972,11, 354.Google Scholar
  2. [2]
    G. S. Hurst, M. G. Nayfeh, J. P. Judish, E. W. Wagner,Phys. Rev. Lett. 1975,35, 82.Google Scholar
  3. [3]
    G. S. Hurst, M. G. Payne,Spectrochim. Acta 1988,43B, 571.Google Scholar
  4. [4]
    W. Ruster, F. Ames, H.-J. Kluge, E.-W. Otten, D. Rehklau, F. Scheerer, G. Herrmann, C. Mühleck, J. Riegel, H. Rimke, P. Sattelberger, N. Trautmann,Nucl. Instr. Meth. 1989,A281, 547.Google Scholar
  5. [5]
    P. Peuser, G. Herrmann, H. Rimke, P. Sattelberger, N. Trautmann, W. Ruster, F. Ames, J. Bonn, H.-J. Kluge, E.-W. Otten,Appl. Phys. 1985,B38, 249.Google Scholar
  6. [6]
    N. Trautmann, G. Herrmann, M. Mang, C. Mühleck, H. Rimke, P. Sattelberger, F. Ames, H.-J. Kluge, E.-W. Otten, D. Rehklau, W. Ruster,Radiochim. Acta 1988,44/45, 107.Google Scholar
  7. [7]
    R. E. Perrin, G. W. Knobeloch, V. M. Armijo, D. W. Efurd,Int. J. Mass Spectrom. Ion. Proc. 1985,64, 17.Google Scholar
  8. [8]
    R. E. Voltz, M. L. Holt,J. Electrochem. Soc. 1967,114, 128.Google Scholar
  9. [9]
    D. L. Donohue, D. H. Smith, J. P. Young, H. S. McKown, C. A. Pritchard,Anal. Chem. 1984,56, 379.Google Scholar
  10. [10]
    N. S. Nogar, R. K. Sander, S. W. Downey, C. M. Miller,Proc. Soc. Photo Opt. Instr. Eng. 1983,380, 291.Google Scholar
  11. [11]
    S. W. Downey, N. S. Nogar, C. M. Miller,Int. J. Mass Spec. Ion Proc. 1984,61, 337.Google Scholar
  12. [12]
    J. Blaise, M. Fred, R. G. Hutmacher,J. Opt. Soc. Am. 1986,B3, 403.Google Scholar
  13. [13]
    W. Ruster, F. Ames, M. Mang, C. Mühleck, H. Rimke, P. Sattelberger, G. Herrmann, H.-J. Kluge, E.-W. Otten, N. Trautmann,Fresenius' Z. Anal. Chem. 1988,331, 182.Google Scholar
  14. [14]
    W. R. Bozman, C. H. Corliss, J. L. Tech,J. Res. Nat. Bur. Std. 1968,72A, 559.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Hubertus Rimke
    • 1
  • Günter Herrmann
    • 1
  • Marita Mang
    • 1
  • Christoph Mühleck
    • 1
  • Joachim Riegel
    • 1
  • Peter Sattelberger
    • 1
  • Norbert Trautmann
    • 1
  • Friedhelm Ames
    • 2
  • Hans -Jürgen Kluge
    • 2
  • Ernst -Wilhelm Otten
    • 2
  • Dieter Rehklau
    • 2
  • Wolfgang Ruster
    • 2
  • Franz Scheerer
    • 2
  1. 1.Institut für KernchemieUniversität MainzMainzFederal Republic of Germany
  2. 2.Institut für PhysikUniversität MainzMainzFederal Republic of Germany

Personalised recommendations