Skip to main content
Log in

Multifractal analysis of elemental distributions in SEM/EDX images of palladium conditioned ET-AAS platforms

  • Original Papers
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A tool of non-linear physics, the multifractal analysis of density distributions, is applied to the analysis of elemental dot maps imaged by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDX). This example concerns distribution patterns of palladium modifier deposits on the graphite platform of an electrothermal atomic absorption spectrometer (ET-AAS). The geometries of palladium distributions were quantitatively determined by multifractal analysis for two types of modifiers: (i) 0.1% (w/v) tetraamminepalladium (II) chloride and (ii) 0.1% (w/v) tetraamminepalladium (II) chloride with 1% (w/v) ammonium oxalate. The multifractal spectra of the generalized fractal dimensions (D b (q)) do not differ forq = 0 (D b (0) ≈ 1.80±0.08), which reflects the surface topography of the graphite platform. For higher moments ofq significant differences occur (e.g.,D b (10) ≈ 1.35±0.13 without ammonium oxalate andD b (10) ≈ 1.55±0.10 in the presence of ammonium oxalate). These multifractal characteristics, which are due to different probabilities of deposition processes, were observed over a spatial range around 0.01–1 mm. The quantitative assessment of the geometrical distributions substantiate that ammonium oxalate promotes processes which lead to a more homogeneous distribution of palladium, thus enhancing the stabilizing effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Block, W. von Bloh, Th. Klenke, H. J. Schellnhuber,J. Geophys. Res. 1991,B96, 16223.

    Google Scholar 

  2. T. M. Mahmood, H. Qiao, K. W. Jackson,J. Anal. At. Spectrom. 1995,10, 43.

    Google Scholar 

  3. H. Qiao, T. M. Mahmood, K. W. Jackson,Spectrochim. Acta 1993,48B, 1495.

    Google Scholar 

  4. B. Kolman, J. Forman, J. Dubsky, P. Chraska,Mikrochim. Acta 1994,114/115, 335.

    Google Scholar 

  5. B. Mandelbrot,The Fractal Geometry of Nature, Freeman, New York, 1983, p. 468.

    Google Scholar 

  6. J. Feder,Fractals, Plenum, New York, 1988, p. 283.

    Google Scholar 

  7. D. Avnir (ed.),The Fractal Approach to Heterogeneous Chemistry, Wiley, Chichester, 1989, p. 441.

    Google Scholar 

  8. A. van Put, A. Vertes, D. Wegrzynek, B. Treiger, R. van Grieken,Fresenius' J. Anal. Chem. 1994,350, 440.

    Google Scholar 

  9. T. Tél,Z. Naturforsch. 1988,43A, 1154.

    Google Scholar 

  10. B. Welz, G. Schlemmer, J. R. Mudokavi,Anal. Chem. 1988,60, 2657.

    Google Scholar 

  11. S. Sachsenberg, Th. Klenke, W. E. Krumbein, H. J. Schellnhuber, E. Zeeck,Anal. Chim. Acta 1993,279, 241.

    Google Scholar 

  12. J. M. Deutsch, R. A. Zachow,Phys. Rev. 1994,E49, R8.

    Google Scholar 

  13. A. Block, W. von Bloh, H. J. Schellnhuber,Phys. Rev. 1990,A42, 1869.

    Google Scholar 

  14. C. K. Lee, W. H. Liang, S. L. Lee,J. Chin, Chem. Soc. 1994,41, 665.

    Google Scholar 

  15. T. Viscek,Fractal Growth Phenomena, World Scientific, Singapore, 1992, p. 488.

    Google Scholar 

  16. S. Imai, Y. Hayashi,Anal. Chem. 1991,63, 772.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klenke, T. Multifractal analysis of elemental distributions in SEM/EDX images of palladium conditioned ET-AAS platforms. Mikrochim Acta 120, 91–100 (1995). https://doi.org/10.1007/BF01244423

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01244423

Key words

Navigation