Skip to main content
Log in

Dopamine, noradrenaline and 3,4-dihydroxyphenylacetic acid (DOPAC) levels of individual brain nuclei, effects of haloperidol and pargyline

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

Noradrenaline (NA), dopamine (DA) and DOPAC were determined with a newly developed radioenzymatic method simultaneously in the striatum, limbic system, hypothalamus and in catecholamine-containing cell groups of the rat brain. Only a loose relationship could be established between DOPAC and DA contents in the various brain areas. The lowest relative DOPAC level (DOPAC/DA ratio) was found in the median eminence, while it was the highest in the periventricular nucleus of the hypothalamus. Haloperidol increased the DOPAC level in only part of the nuclei examined (striatum, olfactory tubercle, central amygdaloid nucleus), while in other limbic regions as well as in the hypothalamic dorsomedial, arcuate and paraventricular nuclei it proved to be ineffective. The DOPAC level in the locus coeruleus was decreased by haloperidol. Pargyline caused an appr. 50% decrease of DOPAC content of most of the nuclei in 10 min; the effectivity of the drug did not show parallelism with that of haloperidol. The monoamine oxidase inhibition caused no change in the DOPAC level in the hypothalamic periventricular and paraventricular nuclei. Results are discussed as a consequence of different reactivity of various DA-ergic terminals and catecholamine cell bodies to haloperidol and pargyline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andén, N.-E., Roos, B.-E., Werdinius, B. Effects of chlorpromazine, haloperidol and reserpine on the levels of phenolic acids in rabbit corpus striatum. Life Sci.3, 149–158 (1964).

    Google Scholar 

  • Andén, N.-E., Butcher, S. G., Corrodi, H., Fuxe, K., Ungerstedt, U. Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Europ. J. Pharmacol.11, 303–314 (1970).

    Google Scholar 

  • Andén, N.-E., Corrodi, H., Fuxe, K. Effect of neuroleptic drugs on central catecholamine turnover assessed using tyrosine- and dopamine-beta-hydroxylase inhibitors. J. Pharm. Pharmacol.24, 177–182 (1972).

    Google Scholar 

  • Agid, Y., Javoy, F., Youdim, M. B. H. Monoamine oxidase and aldehyde dehydrogenase activity in the striatum of rats after 6-hydroxydopamine lesion of nigrostriatal pathway. Brit. J. Pharmacol.48, 175–178 (1973).

    Google Scholar 

  • Argiolas, A., Fadda, F., Stefanini, E., Gessa, G. L. A simple radioenzymatic method for determination of picogram amounts of 3, 4-dihydroxyphenylacetic acid (DOPAC) in the rat brain. J. Neurochem.29, 599 to 601 (1977).

    Google Scholar 

  • Argiolas, A., Pargletti, E., Fadda, F., Pellegrini Quarantotti, B., Gessa, G. L. Effect of psychotropic drugs on 3, 4-dihydroxyphenylacetic acid (DOPAC) content in the medial basal hypothalamus. Life Sci.22, 461 to 466 (1978).

    Google Scholar 

  • Bartholini, G. Differential effect of neuroleptic drugs on dopamine turnover in the extrapyramidal and limbic system. J. Pharm. Pharmacol.28, 429–433 (1976).

    Google Scholar 

  • Björklund, A., Lindvall, O., Nobin, A. Evidence of incerto-hypothalamic dopamine neurone system in the rat. Brain Res.89, 29–42 (1975).

    Google Scholar 

  • Brownstein, M., Saavedra, J. M., Palkovlts, M. Norepinephrine and dopamine in the limbic system of the rat. Brain Res.79, 431–436 (1974).

    Google Scholar 

  • Bunney, B. S., Walters, J. R., Roth, R. H., Aghajanian, G. K. Dopaminergic neurone: effect of antipsychotic drugs and amphetamine on single cell activity. J. Pharmacol. Exp. Ther.185, 560–571 (1973).

    Google Scholar 

  • Carlsson, A., Lindqvist, M. Effect of chlorpromazine or haloperidol on the formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol. Toxicol.20, 140–144 (1963).

    Google Scholar 

  • Cheramy, A., Besson, M. J., Glowinski, J. Increased release of dopamine from striatal dopaminergic terminals in the rat after treatment with a neuroleptic: thioproperazine. Europ. J. Pharmacol.10, 206–214 (1970).

    Google Scholar 

  • Clement-Cornier, Y. C., Kebabian, J. W., Petzold, G. L., Greengard, P. A. Dopamine sensitive adenylate cyclase in mammalian brain: A possible site of action of antipsychotic drugs. Proc. Nat. Acad. Sci. U.S.A.71, 1113–1117 (1974).

    Google Scholar 

  • Creese, I., Burt, D. R., Snyder, S. H. Dopamine receptor binding: differentation of agonist and antagonist states with3H-dopamine and3H-haloperidol. Life Sci.17, 993–1002 (1975).

    Google Scholar 

  • Cuello, A. C., Hiley, R., Iversen, L. L. Use of catechol-O-methyltransferase for the enzyme radiochemical assay of dopamine. J. Neurochem.21, 1337–1340 (1973).

    Google Scholar 

  • Dahlström, A., Fuxe, K. Evidence for the existence of monoaminecontaining neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand.62, Suppl. 232, 1–65 (1964).

    Google Scholar 

  • Dunnett, C. W. A multiple comparison procedure for comparing several treatments with a control. J. Amer. Statist. Ass.50, 1096–1121 (1955).

    Google Scholar 

  • Fadda, F., Argiolas, A., Stefanini, E., Gessa, G. L. Differential effect of psychotropic drugs on dihydroxyphenylacetic acid (DOPAC) in the rat substantia nigra and caudate nucleus. Life Sci.21, 411–418 (1977).

    Google Scholar 

  • Fekete, M. I. K., Kanyicska, B., Herman, J. P. Simultaneous radioenzymatic assay of catecholamines and dihydroxyphenylacetic acid (DOPAC); comparison of the effects of drugs on the tuberoinfundibular and striatal dopamine metabolism and on plasma prolactin level. Life Sci.23, 1549–1556 (1978).

    Google Scholar 

  • Fowler, C. L., Callingham, B. A., Mantle, T. J., Tipton, K. F. Monoamine oxidase A and B: a useful concept. Biochem. Pharmacol.27, 97–101 (1978).

    Google Scholar 

  • Fuxe, K., Agnati, L., Tsuchiya, K., Hökfelt, T., Johansson, G., Lundbrink, P., Löfström, A., Ungerstedt, U. Effect of antipsychotic drugs on central catecholamine neurons of rat brain. In: Antipsychotic drugs, Pharmacodynamics and Pharmacokinetics (Sedvall, G., ed.), pp. 117 to 132. Oxford: Pergamon Press. 1975.

    Google Scholar 

  • Gudelsky, G. A., Moore, K. E. Differential drug effects on dopamine concentrations and rates of turnover in the median eminence, olfactory tubercle and corpus striatum. J. Neural Transm.38, 95–105 (1976).

    Google Scholar 

  • Gudelsky, G. A., Moore, K. E. A comparison of the effect of haloperidol on dopamine turnover in the striatum, olfactory tubercle and median eminence. J. Pharmacol. Exp. Ther.202, 149–156 (1977).

    Google Scholar 

  • Herman, J. P., Fekete, M., Palkovits, M., Stark, E. Catecholamine turnover measurement and ACTH-induced short-term changes of catecholamine levels in individual brain nuclei. Pol. J. Pharmacol.29, 323–332 (1977).

    Google Scholar 

  • Javoy, F., Hamon, M., Glowinski, J. Disposition of newly synthetized amines in cell bodies and terminals of central catecholaminergic neurons. I. Effect of amphetamine and thioproperazine on the metabolism of catecholamines in the caudate nucleus, substantia nigra and the ventromedial nucleus, of the hypothalamus. Europ. J. Pharmacol.10, 178–188 (1970).

    Google Scholar 

  • Kebabian, J. W., Saavedra, J. M., Axelrod, J. A sensitive enzymatic radioisotopic assay for 3, 4-dihydroxyphenylacetic acid. J. Neurochem.28, 795–801 (1977).

    Google Scholar 

  • Kizer, J. S., Kopin, I. J., Zivin, J. A.: Estimates of catecholamine turnover rates in individual hypothalamic nuclei of the rat by use of alpha-methyl-paratyrosine. Brit. J. Pharmacol.54, 243P (1975).

  • Kizer, J. S., Palkovits, M., Brownstein, M. J. The projections of the A8, A9 and A10 dopaminergic cell bodies: evidence for a nigral-hypo-thalamic-median eminence dopaminergic pathway. Brain Res.108, 363–370 (1976).

    Google Scholar 

  • Korf, J., Zieleman, M., Westerink, H. C. Metabolism of dopamine in the substantia nigra after antidromic activation. Brain Res.120, 184–187 (1977).

    Google Scholar 

  • Lowry, O., Rosebrough, N., Farr, A., Randall, R. Protein measurement with the Folin phenol reagent. J. biol. Chem.193, 265–275 (1951).

    Google Scholar 

  • Nybäck, N. Effect of brain lesions and chlorpromazine on accumulation and disappearance of catecholamine formed in vivo from14C-tyrosine. Acta Physiol. Scand.84, 54–64 (1972).

    Google Scholar 

  • Palkovits, M. Isolated removal of hypothalamic or other brain nuclei of the rat. Brain Res.59, 449–450 (1973).

    Google Scholar 

  • Palkovits, M., Brownstein, M. J., Saavedra, J. M., Axelrod, J. Norepinephrine and dopamine content of hypothalamic nuclei of the rat. Brain Res.77, 137–149 (1974).

    Google Scholar 

  • Roffler-Tarlov, S., Sharman, D. F., Tegerdine, P. 3, 4-Dihydroxyphenyacetic acid and 4-hydroxy-3-methoxyphenylacetic acid in the mouse striatum: A reflection of intra- and extraneuronal metabolism of dopamine. Brit. J. Pharmacol.42, 343–351 (1971).

    Google Scholar 

  • Scatton, B., Thierry, A. M., Glowinski, J., Julou, L. Effects of thiproperazine and apomorphine on dopamine synthesis in the mesocortical dopaminergic systems. Brain Res.88, 389–393 (1975).

    Google Scholar 

  • Spano, P. F., Neff, N. H. Metabolie fate of caudate nucleus dopamine. Brain Res.42, 139–145 (1972).

    Google Scholar 

  • Tassin, J. P., Cheramy, A., Blanc, G., Thierry, A. M., Glowinski, J. Topographical distribution of dopaminergic innervation and of dopaminergic receptors in the striatum. I. Microestimation of (H3)dopamine uptake and dopamine content in microdiscs. Brain Res.107, 291–301 (1976).

    Google Scholar 

  • Usdin, E., Bunney, W. E., jr. (eds.): Pre- and postsynaptic receptors. New York: Marcel Dekker Inc. 1975.

    Google Scholar 

  • Van der Gugten, J., Palkovits, M., Wijnen, H. L. J. M., Versteeg, D. H. G. Regional distribution of adrenaline in rat brain. Brain Res.107, 171 to 175 (1976).

    Google Scholar 

  • Versteeg, D. H. G., Van der Gugten, J., Van Ree, J. M. Regional turnover and synthesis of catecholamines in rat hypothalamus. Nature256, 502–503 (1975).

    Google Scholar 

  • Waldmeier, P. C., Delini-Stule, A., Maitre, L. Preferential deamination of dopamine by an A type monoamine oxidase in rat brain. Naunyn-Schmiedeberg's Arch. Pharmacol.292, 9–14 (1976).

    Google Scholar 

  • Westerink, B. H. C., Lejeune, B., Korf, J., van Praag, H. M. On the significance of regional dopamine metabolism in the rat brain for the classification of centrally acting drugs. Europ. J. Pharmacol.42, 179 to 190 (1977).

    Google Scholar 

  • Wiesel, F.-A., Fri, C.-G., Sedvall, G. Determination of homovanillic acid turnover in rat striatum using a monoamine oxidase inhibitor. Europ. J. Pharmacol.23, 104–106 (1973).

    Google Scholar 

  • Wilk, S., Watson, E., Travis, B. Evaluation of dopamine metabolism in rat striatum by a gas Chromatographie technique. Europ. J. Pharmacol.30, 238–243 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fekete, M.I.K., Herman, J.P., Kanyicska, B. et al. Dopamine, noradrenaline and 3,4-dihydroxyphenylacetic acid (DOPAC) levels of individual brain nuclei, effects of haloperidol and pargyline. J. Neural Transmission 45, 207–218 (1979). https://doi.org/10.1007/BF01244409

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01244409

Key words

Navigation