Skip to main content
Log in

Biochemical, behavioural, and endocrine effects of CK 204-933, a novel 8β-ergolene

  • Original Papers
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

CK 204-933 displaces [3H]dopamine and [3H]spiperonene with high affinity from D-1 and D-2 recognition sites in membranes of calf caudate. Results from functionalin vitro tests suggest that it is a partial agonist at D-1 receptors and an antagonist at D-2 receptors. These opposite effects at dopamine receptor subtypes are also expressedin vivo. For instance, in 6-hydroxydopamine lesioned rats, CK 204-933 induces contralateral rotations which are antagonised by SCH 23390 but not by sulpiride. On the other hand, CK 204-933 induces a long lasting increase of dopamine turnover in rat striatum and antagonises apomorphine-induced gnawing behaviour in rats. CK 204-933 increases prolactin serum levels in rats after subcutaneous administration, whereas after oral administration a moderate decrease of prolactin serum levels was seen. The latter effect is probably due to the formation of active metabolites. CK 204-933 exhibits also a high affinity to [3H]prazosin binding sites and antagonises serotonin-mediated stimulation of adenylate cyclase in rat hippocampus. On the other hand, CK 204-933 has no effect of only very weak effects on noradrenaline and serotonin release from rat cerebral cortex slices, which is consistent with its weak effects on noradrenaline- and serotonin-turnover in rat brain. Based on these properties it is suggested that CK 204-933 could be of therapeutic value in brain diseases associated with disturbances of monoaminergic neurotransmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adolfsson R, Gottfries CG, Ross BE, Winblad B (1979) Post-mortem distribution of dopamine and homovanillic acid in human brain, variations related to age, and a review of the literature. J Neural Transm 45: 81–105

    Google Scholar 

  • Berde B, Schild HO (1978) Ergot alkaloids and related compounds. Handbook of experimental pharmacology, vol 49. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Berthelsen S, Pettinger WA (1977) A functional basis for classification ofα-adrenergic receptors. Life Sci 21: 595–606

    Google Scholar 

  • Carlsson A, Gottfries CG, Svennerholm L, Adolfsson R, Oreland L, Winblad B, Aquilonius SM (1980) Neurotransmitters in human brain analysed post mortem: changes in normal aging, senile dementia and chronic alcoholism. In: Rinne U, Klinger M, Stamm G (eds) Parkinson's disease-current progress, problems and managament. Elsevier North Holland Biomedical Press, Amsterdam, pp 121–133

    Google Scholar 

  • Cattabeni F, Koslow SH, Costa E (1972) Gas-chromatographic-mass spectrometric assay of four indolalkylamines of rat pineal. Science 178: 166–168

    Google Scholar 

  • Closse A, Frick W, Dravid A, Bolliger G, Hauser D, Sauter A, Tobler HJ (1984) Classification of drugs according to receptor profiles. Naunyn Schmiedebergs Arch Pharmacol 327: 95–101

    Google Scholar 

  • Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192: 481–483

    Google Scholar 

  • Creese I, Schneider R, Snyder SH (1977)3H-spiroperidol labels dopamine receptors in pituitary and brain. Eur J Pharmacol 46: 377–381

    Google Scholar 

  • Diamond SG, Markham CH, Treciolas LJ (1985) Double blind trial of pergolide for Parkinson's disease. Neurology 35: 291–295

    Google Scholar 

  • Engel G, Goethert M, Hoyer D, Schlicker E, Hillenbrand K (1986) Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites. Naunyn Schmiedebergs Arch Pharmacol 332: 1–7

    Google Scholar 

  • Enz A (1981) Biphasic influence of a 8-alpha-aminoergoline, CU 32-085, on striatal dopamine synthesis and turnoverin vivo in the rat. Life Sci 29: 2227–2234

    Google Scholar 

  • Euvrard C, Ferland L, DiPaolo T, Beaulieu M, Labrie F, Oberlander C, Raynaud JP, Boissier JR (1980) Activity of two new potent dopaminergic agonists at the striatal and anterior pituitary levels. Neuropharmacol 19: 379–386

    Google Scholar 

  • Fleminger S, Van de Waterbeemd H, Rupniak NMJ, Reavill C, Testa B, Jenner P, Marsden CD (1983) Potent lipophilic substituted benzamide drugs are not selective D-1 dopamine receptor antagonists in the rat. J Pharm Pharmacol 35: 363–368

    Google Scholar 

  • Frandsen EK, Krishna G (1976) A simple ultrasensitive method for the assay of cyclic AMP and cyclic GMP in tissues. Life Sci 18: 529–542

    Google Scholar 

  • Gerhardt S, Gerber L, Liebman JM (1985) SCH 23390 dissociated from conventional neuroleptics in apomorphin climbing and primate acute dyskinesia models. Life Sci 37: 2355–2363

    Google Scholar 

  • Gerlach J (1977) The relationship between parkinsonism and tardive dyskinesia. Am J Psychiatry 134: 781–784

    Google Scholar 

  • Gershanik O, Heikkila RE, Duvoisin RC (1983) Effects of dopamine depletion on rotational behavior to dopamine agonists. Brain Res 261: 358–360

    Google Scholar 

  • Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain. I. The disposition of3H-noradrenaline,3H-dopamine and3H-DOPA in various regions of the brain. J Neurochem 13: 655–665

    Google Scholar 

  • Gottfries CG (1982) The metabolism of some neurotransmitters in ageing and dementia disorders. Gerontology 28 [suppl 2]: 11–19

    Google Scholar 

  • Helmreich I, Reimann W, Hertting G, Starke K (1982) Are presynaptic dopamine autoreceptors and postsynaptic dopamine receptors in the rabbit caudate nucelus pharmacologically different. Neuroscience 7: 1559–1566

    Google Scholar 

  • Hertting G, Zumstein A, Jackisch R, Hoffmann I, Starke K (1980) Modulation by endogenous dopamine of the release of acetylcholine in the caudate nucleus of the rabbit. Naunyn Schmiedebergs Arch Pharmacol 315: 111–117

    Google Scholar 

  • Hyttel J (1984) Functional evidence for selective D-1 receptor blockade by SCH 23390. Neuropharmacol 12: 1395–1401

    Google Scholar 

  • Iorio LC, Barnett A, Leitz FH, Houser VP, Korduba CA (1983) SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. J Pharmacol Exp Ther 226: 462–468

    Google Scholar 

  • Janssen PA, Niemegeers CJE, Schellekens KHL, Lenaerts FM (1967) Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data? Drug Res 17: 841–854

    Google Scholar 

  • Karoum F, Gillin JC, Wyatt RJ (1975) Mass fragmentographic determination of some acidic and alcoholic metabolites of biogenic amines in the rat brain. J Neurochem 25: 653–658

    Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277: 93–96

    Google Scholar 

  • Kehr W (1977) Effect of lisuride and other ergot derivatives on monoaminergic mechanisms in rat brain. Eur J Pharmacol 41: 261–273

    Google Scholar 

  • Koslow SH, Cattabeni F, Costa E (1972) Norepinephrine and dopamine: assay by mass fragmentography in the picomole range. Science 176: 177–180

    Google Scholar 

  • Langer G, Sachar EJ, Gruen PH, Halpern FS (1977) Human prolactin response to neuroleptic drugs correlate with antischizophrenic potency. Nature 266: 639–640

    Google Scholar 

  • Lehmann J, Smith RV, Langer SZ (1983 a) Stereoisomers of apomorphine differ in affinity and intrinsic activity at presynaptic dopamine receptors modulating [3H] dopamine and [3H]acetylcholine release. Eur J Pharmacol 88: 81–88

    Google Scholar 

  • Lehmann J, Briley M, Langer SH (1983 b) Characterisation of dopamine autoreceptor and [3H]spiperone binding sitesin vitro with classical and novel dopamine receptor agonists. Eur J Pharmacol 88: 11–25

    Google Scholar 

  • Lieberman AN, Gopinathan G, Neophytides A, Leibowitz M, Walker R, Hiesiger E (1983) Bromocriptine and lisuride in Parkinson's disease. Ann Neurology 13: 44–47

    Google Scholar 

  • Loew D, Weil C (1982) Hydergine in senile mental impairment. Gerontology 28: 54–74

    Google Scholar 

  • Markstein R (1983) Mesulergine and its 1,20-N,N-bidemethylated metabolite interact directly with D-1 and D-2 receptors. Eur J Pharmacol 95: 101–107

    Google Scholar 

  • Markstein R, Lahaye D (1983)In vitro effects of the racemic mixture and the (−)enantiomer of the N-n-propyl-3-(3-hydroxyphenyl)-piperidine (3-PPP) on postsynaptic dopamine receptors and on a presynaptic dopamine autoreceptor. J Neural Transm 58: 43–53

    Google Scholar 

  • Markstein R, Closse A, Frick W (1983) Interaction of ergot alkaloids and their combination (co-dergocrine) with alpha-adrenoceptors in the CNS. Eur J Pharmacol 93: 156–169

    Google Scholar 

  • Markstein R (1985) Hydergine: interaction with neurotransmitter system in the central nervous system. J Pharmacol 16 [suppl III]: 1–7

    Google Scholar 

  • Markstein R (1986 a) Pharmacological characterisation of central dopamine receptors using functional criteria. In: Winlow W, Markstein R (eds) The neurobiology of dopamine. Manchester University Press, Manchester, pp 41–52

    Google Scholar 

  • Markstein R, Hoyer D, Engel G (1986 b) 5-HT1A receptors mediate stimulation of adenylate cyclase in rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol 333: 335–341

    Google Scholar 

  • McLeod RM (1976) Regulation of prolactin secretion. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology, vol 4. Raven Press, New York, pp 169–194

    Google Scholar 

  • Miach PJ, Dausse JP, Cardot A, Meyer P (1980)3H-prazosin binds specifically toα-1-adrenoceptors in rat brain. Naunyn Schmidebergs Arch Pharmacol 312: 23–26

    Google Scholar 

  • Middlemiss DN, Fozard JR (1983) 8-hydroxy-2-(di-n-propylamino)tetralin discriminates between subtypes of the 5-HT1 recognition site. Eur J Pharmacol 90: 151–153

    Google Scholar 

  • Nomoto M, Jenner PJ, Marsden CD (1985) The dopamine D-2 agonist LY 141865 but not the D-1 agonist SKF 38393 reverses parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the common marmoset. Neurosci Lett 57: 37–41

    Google Scholar 

  • Peroutka S, Snyder SH (1981) Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H] lysergic acid diethylamide and [3H]spiroperidol. Science 212: 827–829

    Google Scholar 

  • Scatton B, Worms P, Zikovic B, Depoortere H, Dedek J, Bartholoni G (1979) On the neuropharmacological spectra of classical (Haloperidol) and atypical (Benzamide derivatives) neuroleptics. In: Spano PE, Trabucchi M, Corsini GU, Gessa GL (eds) Sulpiride and other benzamides. Italian Brain Res Fondation Press, Milan, pp 53–66

    Google Scholar 

  • Seeman P (1980) Brain dopamine receptors. Pharmacol Rev 32: 229–313

    Google Scholar 

  • Seiler MP, Markstein R (1982) Further characterisation of structural requirements for agonists at the striatal dopamine D-1 receptor. Studies with a series of monohydroxyamino-tetralins on dopamine-sensitive adenylate cyclase and a comparison with dopamine receptor binding. Mol Pharmacol 22: 281–289

    Google Scholar 

  • Setler PE, Sarau HM, Zirkle CL, Saunders HL (1978) The central effects of a novel dopamine agonist. Eur J Pharmacol 50: 419–430

    Google Scholar 

  • Sibley DR, Creese I (1983) Interaction of ergot alkaloids with anterior pituitary D-2 dopamine receptors. Mol Pharmacol 23: 585–593

    Google Scholar 

  • Starke K (1977) Regulation of noradrenaline release by presynaptic receptor systems. Rev Physiol Biochem Pharmacol 77: 1–124

    Google Scholar 

  • Starke K, Reimann W, Zumstein A, Hertting G (1978) Effect of dopamine receptor agonists and antagonists on release of dopamine in the rabbit caudate nucleusin vitro. Naunyn Schmiedebergs Arch Pharmacol 305: 27–36

    Google Scholar 

  • Starke K, Spaeth JD, Adelung C (1983) Further functionalin vitro comparison of pre- and postsynaptic dopamine receptors in the rabbit caudate nucleus. Naunyn Schmiedebergs Arch Pharmacol 323: 298–306

    Google Scholar 

  • Steiner AL, Kipnis DM, Utiger R, Parker C (1969) Radioimmunoassay for the measurement of adenosine 3′,5′-cyclic phosphate. Proc Natl Acad Sci USA. 64: 367–373

    Google Scholar 

  • Stephenson RP (1956) A modification of receptor theory. Br J Pharmacol 11: 379–393

    Google Scholar 

  • Stoof JC, DeBoer T, Sminia P, Mulder AH (1982) Stimulation of D-2 dopamine receptors in rat neostriatum inhibits the release of acetylcholine and dopamine but does not affect the release of gamma-amino-butyric acid, gluatamate or serotonin. Eur J Pharmacol 84: 211–214

    Google Scholar 

  • Stoof JC, Kebabian JW (1984) Two dopamine receptors: biochemistry, physiology and pharmacology. Life Sci 35: 2281–2296

    Google Scholar 

  • Ungerstedt U, Arbutnott GW (1970) Quantitative recording of rotational behaviour in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system. Brain Res 24: 485–493

    Google Scholar 

  • U'Prichard DC, Greenberg DA, Snyder SH (1977) Binding characteristics of radiolabeled agonist and antagonists at central nervous system alpha noradrenergic receptors. Mol Pharmacol 13: 454–473

    Google Scholar 

  • Usuda S, Nishikori K, Noshiro O, Maeno H (1981) Neuroleptic properties of cis-N-(1-Benzyl-2-methylpyrrolidin-3-yl)-5-chloro-2-methoxy-4-methylaminobenzamide (YM-09151-2) with selective antidopaminergic activity. Psychopharmacology 73: 103–109

    Google Scholar 

  • Vance ML, Evans WS, Thorner MO (1984) Bromocriptine. Ann Intern Med 100: 78–91

    Google Scholar 

  • Vigouret JM, Buerki HR, Jaton AL, Zueger PE, Loew DM (1978) Neurochemical and neuropharmacological investigations with four ergot derivatives: bromocriptine, dihydroergotoxine, CF 25-397 and CM 29-712. Pharmacology 16 [suppl 1]: 156–173

    Google Scholar 

  • Wachtel H, Kehr W, Sauer G (1983) Central antidopaminergic properties of 2-bromolisuride, an analogue of the ergot dopamine agonist lisuride. Life Sci 33: 2583–2597

    Google Scholar 

  • Wachtel H, Dorow R (1983) Dual action in central dopamine function of transdihydrolisuride, a 9,10-dihydrogenated analogue of the ergot dopamine agonist lisuride. Life Sci 32: 421–432

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markstein, R., Enz, A., Vigouret, J.M. et al. Biochemical, behavioural, and endocrine effects of CK 204-933, a novel 8β-ergolene. J. Neural Transmission 69, 179–199 (1987). https://doi.org/10.1007/BF01244340

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01244340

Key words

Navigation