Skip to main content
Log in

Study of the complexation chemistry and speciation of thallium for on-line preconcentration with immobilised quinolin-8-ol

  • Original Papers
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The effects of various buffering reagents and pH conditions were investigated by flame atomic absorption spectrometry to optimise complexation of T13+ with quinolin-8-ol (8-Q), immobilised on controlled-pore glass beads in a 5-cm column. As Tl3+ is a softer acid than the other trivalent cations of the Group III elements, the effects of the buffers are different from those observed previously for Al3+, Ga3+ and In3+. A mixed buffer of 0.1 mol l−1 acetate and 0.1 mol l−1 ammonium chloride at pH 10 proved most successful, although 0.1 mol l−1 maleate was also satisfactory over a pH range of 4–10. As thallium normally exists as Tl+ in solution, an oxidation method was developed to convert the ions to Tl3+, which is more efficiently complexed by 8-Q. Addition of 1–10 μl of bromine per 100 ml of sample was sufficient to oxidise Tl+ without heating. Excess bromine was removed by addition of phenol. With a flow-rate of 6 ml min−1, the detection limit of Tl3+ is 3 ng ml−1, for a 3-miri preconcentration time. The enrichment factor under these conditions is 55 and the characteristic concentration is 2 ng ml−1. The major ions in sea water did not interfere with Tl3+ preconcentration and the tolerable limits of Fe3+, Cu2+ and Al3+ are high enough to permit analysis of river and sea waters. The method was applied successfully to the determination of thallium in potassium-enriched table salt. It was also shown that the concentrations of Tl+ and Tl3+ in a solution can be derived using the described procedure, allowing speciation of inorganic thallium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Olsen, L. C. R. Pessend, J. Ruzicka, E. H. Hansen,Analyst 1983,108, 905.

    Google Scholar 

  2. X. Wang, R. M. Barnes,J. Anal. At. Spectrom. 1989,4, 509.

    Google Scholar 

  3. E. H. Heithmar, T. A. Hinners,Anal. Chem. 1990,62, 331.

    Google Scholar 

  4. Z. Fang, M. Sperling, B. Welz,J. Anal. At. Spectrom. 1990,5, 639.

    Google Scholar 

  5. Z. Fang,Spectrochim. Acta Rev. 1991,14, 235.

    Google Scholar 

  6. Z. Fang, J. Ruzicka, E. H. Hansen,Anal. Chim. Acta 1984,164, 23.

    Google Scholar 

  7. D. Beauchemin, S. S. Berman,Anal. Chem. 1989,61, 1857.

    Google Scholar 

  8. F. Malmas, M. Bengtsson, G. Johansson,Anal. Chim. Acta 1984,160, 1.

    Google Scholar 

  9. R. E. Sturgeon, S. S. Berman, S. N. Willie, J. A. H. Desaulnier,Anal. Chem. 1981,53, 2337.

    Google Scholar 

  10. S. N. Willie, R. E. Sturgeon, S. S. Berman,Anal. Chim. Acta 1983,149, 59.

    Google Scholar 

  11. S. Nakashima, R. E. Sturgeon, S. N. Willie, S. S. Berman,Fresenius Z. Anal. Chem. 1988,330, 592.

    Google Scholar 

  12. B. Mohammad, A. M. Ure, D. Littlejohn,J. Anal. At. Spectrom. 1992,7, 695.

    Google Scholar 

  13. B. Mohammad, A. M. Ure, D. Littlejohn,J. Anal. At. Spectrom. 1993,8, 325.

    Google Scholar 

  14. C. F. Baes Jr., R. E. Mesmer,The Hydrolysis of Cations, Wiley-Interscience, New York, 1976.

    Google Scholar 

  15. J. S. Schoer, in:Handbook of Environmental Chemistry (O. Hutzinger ed.), Springer, Berlin Heidelberg New York Tokyo, 1984, p. 43.

    Google Scholar 

  16. M. A. Allus, M. H. Martin, G. Nickless,Chemosphere 1987,16, 929.

    Google Scholar 

  17. M. A. Allus, R. G. Brereton,Analyst 1992,117, 1075.

    Google Scholar 

  18. D. L. Tsalev, Z. K. Zaprianor,Atomic Absorption Spectrometry in Occupational and Environmental Health Practice, Vol. 1, Analytical Aspects and Health Significance, CRC, Florida, 1983, pp. 81–246.

    Google Scholar 

  19. S. Sabbioni, L. Goetz, E. Marafante,Sci. Total Environ. 1980,15, 123.

    Google Scholar 

  20. A. M. Ure, M. L. Berrow, in:Environmental Chemistry, Vol. 2 (H. J. Bowen ed.), Royal Society of Chemistry, London, 1982, pp. 155–195.

    Google Scholar 

  21. E. Waidmann, M. Stoeppler, P. Heininger,Analyst 1992,117, 295.

    Google Scholar 

  22. J. E. Bonelli, H. E. Taylor, R. K. Skogerboe,Anal. Chim. Acta 1980,118, 243.

    Google Scholar 

  23. A. Miyazaki, H. Tao,Anal. Sci. [Suppl]1991,7, 1053.

    Google Scholar 

  24. B. Griepink, M. Sager, G. Tolg,Pure Appl. Chem. 1988,60, 1426.

    Google Scholar 

  25. T. Moeller, A. J. Cohen,Anal. Chem. 1950,22, 686.

    Google Scholar 

  26. J. Inczedy,Analytical Applications of Complex Equilibria, Akademiai Kiadó, Budapest/Ellis Horwood, Chichester, 1976.

    Google Scholar 

  27. S. Kotrly, L. Sucha,Handbook of Chemical Equilibria in Analytical Chemistry, Ellis Horwood, Chichester, 1985.

    Google Scholar 

  28. H. Goto, Y. Kakita, N. Inchinose,J. Chem. Soc. Jpn, Pure Chem. Sect. 1967,88, 638.

    Google Scholar 

  29. A. D. Matthews, J. P. Riley,Anal. Chim. Acta 1969,48, 25.

    Google Scholar 

  30. J. P. Riley, S. A. Siddiqui,Anal. Chim. Acta 1986,181, 117.

    Google Scholar 

  31. L. H. Ahrens,Geochim. Cosmochim. Acta 1952,2, 169.

    Google Scholar 

  32. A Ciszewski,Talanta 1990,37, 995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammad, B., Ure, A.M. & Littlejohn, D. Study of the complexation chemistry and speciation of thallium for on-line preconcentration with immobilised quinolin-8-ol. Mikrochim Acta 113, 325–337 (1994). https://doi.org/10.1007/BF01243622

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01243622

Key words

Navigation