Skip to main content
Log in

Anticonvulsant drug action and regional neurotransmitter amino acid changes

  • Original Papers
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

The role played by the inhibitory transmitters, GABA, glycine and taurine, and by excitatory (aspartate/glutamate) antagonists in mediating anticonvulsant action will be documented. This study provides examples of one anticonvulsant compound that affects glycine metabolism (milacemide), and another that affects aspartate metabolism (Β-methylene-aspartate). Β-Methylene-aspartate, a selective inhibitor of glutamate-aspartate transaminase activity, protects against sound-induced seizures in audiogenic DBA/2 mice, with an ED50 value of 1.9 Μmoles (icv; clonic phase). Forebrain and cerebellar aspartate, glutamate and GABA levels are reduced by 15–30% following the administration of Β-methylene-aspartate.

Milacemide, a glycinamide derivative with experimental and clinical anticonvulsant activity, is ineffective against sound-induced seizures in DBA/2 mice. Following the ip administration of milacemide (100mg/kg; 3 hours) there were significant increases in rat brain glycine levels in the cerebellum (+ 137%), cortex (+ 45%) and hippocampus (+ 59%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernasconi R, Maitre L, Martin P, Raschdorf F (1982) The use of inhibitors of GABA-transaminase for the determination of GABA turnover in mouse brain region: an evaluation of aminooxyacetic acid and gabaculin. J Neurochem 38: 57–66

    Google Scholar 

  • Bonhaus DW, Huxtable RJ (1983) The transport, biosynthesis and biochemical actions of taurine in a genetic epilepsy. Neurochem Int 5: 413–419

    Google Scholar 

  • Bonhaus DW, Lippincott SE, Huxtable RJ (1984) Subcellular distribution of neuroactive amino acids in brains of genetically epileptic rats. Epilepsia 25: 564–568

    Google Scholar 

  • Bonhaus DW, Pasantes-Morales H, Huxtable RJ (1985) Actions of guanidinoethane sulfonate on taurine concentration, retinal morphology and seizure threshold in the neonatal rat. Neurochem Int 7: 263–270

    Google Scholar 

  • Chapman AG (1985) Regional changes in transmitter amino acids during focal and generalized seizures in rats. J Neural Transm 63: 95–107

    Google Scholar 

  • Chapman AG, Riley K, Evans MC, Meldrum BS (1982a) Acute effects of sodium valproate andγ-vinyl-GABA on regional amino acid metabolism in the rat brain. Incorporation of 2-[14C]glucose into amino acids. Neurochem Res 7: 1089–1105

    Google Scholar 

  • Chapman AG, Keane PE, Meldrum BS, Simiand J, Vernieres JC (1982b) Mechanisms of anticonvulsant action of valproate. Prog Neurobiol 19: 315–359

    Google Scholar 

  • Chapman AG, Evans MC (1983) Cortical GABA turnover during bicuculline seizures in rats. J Neurochem 41: 886–889

    Google Scholar 

  • Chapman AG, Croucher MJ, Meldrum BS (1984) Evaluation of anticonvulsant drugs in DBA/2 mice with sound-induced seizures. Arzneimittelforschung 34: 1261–1264

    Google Scholar 

  • Chapman AG, Cheetham SC, Hart GP, Meldrum BS, Westerberg E (1985) Effects of two convulsant Β-carboline derivatives. DMCM and Β-CCM, on regional neurotransmitter amino acid levels and on in vitro D-[3H]aspartate release in rodents. J Neurochem 45: 370–381

    Google Scholar 

  • Chapman AG, Faingold CL, Hart GP, Bowker HM, Meldrum BS (1986a) Brain regional amino acid levels in seizure susceptible rats: changes related to sound-induced seizures. Neurochem Int 8: 273–279

    Google Scholar 

  • Chapman AG, Halsey MJ, Hart GP, Luff NP, Meldrum BS, Wardley-Smith B (1986b) Regional amino acid concentrations in the brains of rats exposed to high pressures. J Neurochem 47: 314–317

    Google Scholar 

  • Chapman AG, Meldrum BS, Nanji N, Watkins JC (1987a) Anticonvulsant action and biochemical effects in DBA/2 mice of CPP (3-((±)-2-carboxypiperazin-4-yl)-propyl-1-phosphonate), a novel N-methyl-D-aspartate antagonist. Eur J Pharmacol 139: 91–96

    Google Scholar 

  • Chapman AG, Engelsen B, Meldrum BS (1987b) 2-amino-7-phosphonoheptanoic acid inhibits insulin-induced convulsions and striatal aspartate accumulation in rats with frontal cortical ablation. J Neurochem 49: 121–127

    Google Scholar 

  • Christophe J, Kutzner R, Nguyen-Bui ND, Damien C, Chatelain P, Gillet L (1984) Conversion of orally administred 2-n-pentylaminoacetamide into glycinamide and glycine in the brain. Life Sci 33: 533–541

    Google Scholar 

  • Chung E, Yocca F, Van Woert M (1985) Urea-induced myoclonus: medullary glycine antagonism as mechanism of action. Life Sci 36: 1051–1058

    Google Scholar 

  • Chung S-H, Johnson MS, Gronenborn AM (1984) L-Cycloserine: a potent anticonvulsant. Epilepsia 25: 353–362

    Google Scholar 

  • Ciesielski L, Simler S, Clement J, Mandel P (1985) Age-dependent changes in brain GABA turnover rates of two inbred strains of mice. J Neurochem 45: 244–248

    Google Scholar 

  • Cooper AJL, Fitzpatrick SM, Ginos JZ, Kaufman C, Dowd P (1983) Inhibition of glutamate-aspartate transaminase by Β-methylene-DL-aspartate. Biochem Pharmacol 32: 679–689

    Google Scholar 

  • Fitzpatrick SM, Cooper AJL, Duffy TE (1983) Use of Β-methylene-D,L-aspartate to assess the role of aspartate aminotransferase in cerebral oxidative metabolism. J Neurochem 41: 1370–1383

    Google Scholar 

  • Houtkooper MA, van Oorschot CAEH, Rentmeester TW, Höppener PJEA, Onkelinx C (1986) Double blind study of milacemide in hospitalized therapy-resistant patients with epilepsy. Epilepsia 27: 255–262

    Google Scholar 

  • Janssens de Varebeke P, Niebes P, Pauwels G, Roba J, Korf J (1983) Effect of milacemide, a glycinamide derivative, on the brainγ-aminobutyric acid system. Biochem Pharmacol 32: 2751–2755

    Google Scholar 

  • Koivisto K, Sivenius J, KerÄnen T, Partanen J, Riekkinen P, Gothoni G, Tokola O, Neuvonen PJ (1986) Clinical trial with an experimental taurine derivative taltrimide, in epileptic patients. Epilepsia 27: 87–90

    Google Scholar 

  • Lehmann A, Isacsson H, Hamberger A (1983) Effects of in vivo administration of kainic acid on the extracellular amino acid pool in the rabbit hippocampus. J Neurochem 40: 1314–1320

    Google Scholar 

  • Lehmann A, Lazarewicz JW, Zeise M (1985) N-methylaspartate-evoked liberation of taurine and phosphoethanolamine in vivo: site of release. J Neurochem 45: 1172–1177

    Google Scholar 

  • Lerma J, Herranz AS, Herreras O, Muñoz D, Solís JM, del Río RM, Delgado JMR (1985)γ-aminobutyric acis greatly increases in vivo extracellular taurine in the rat hippocampus. J Neurochem 44: 983–986

    Google Scholar 

  • Lindén I-B, Gothóni G, Kontro P, Oja SS (1983) Anticonvulsant activity of 2-phthalimidoethanesulphonamides: new derivatives of taurine. Neurochem Int 5: 319–324

    Google Scholar 

  • Mandel P, Pasantes-Morales H (1978) Taurine in the nervous system. Rev Neurosci 3: 157–193

    Google Scholar 

  • Marnely K-M, Morris HR, Panico M, Timonen M, LÄhdesmÄki P (1985) Glutamyl-taurine is the predominant synaptic taurine peptide. J Neurochem 44: 752–754

    Google Scholar 

  • Meldrum BS (1975) Epilepsy andγ-aminobutyric acid-mediated inhibition. Int Rev Neurobiol 17: 1–36

    Google Scholar 

  • Meldrum BS (1985) GABA and other amino acids. In: Frey H-H, Janz D (eds) Handbook of experimental pharmacology, vol 74. Springer, Berlin Heidelberg New York Tokyo, pp 153–188

    Google Scholar 

  • Meldrum BS, Chapman AG (1983) Excitatory amino acids and anticonvulsant drug action. In: Hertz L, Kvamme E, McGeer EG, Schousboe A (eds) Glutamine, glutamate, and GABA in the central nervous system. Alan R Liss, New York, pp 625–641

    Google Scholar 

  • Meldrum BS, Braestrup C (1984) GABA and the anticonvulsant action of benzodiazepines and related drugs. In: Bowery NG (ed) Actions and interactions of GABA and benzodiazepines. Raven Press, New York, pp 133–153

    Google Scholar 

  • Mori A, Katayama Y, Yokoi J, Matsumota M (1981) Inhibition of taurocyamine (guanidinotaurine)-induced seizures by taurine. In: Schaffer SW, Baskin SI, Kocsis JJ (eds) The effects of taurine on excitable tissues. Spectrum, New York, pp 41–48

    Google Scholar 

  • Peričić D, Eng N, Walters RJ (1978) Post-mortem and aminooxyacetic acid-induced accumulation of GABA: effect ofγ-butyrolactone and picrotoxin. J Neurochem 30: 767–773

    Google Scholar 

  • Rassin DK, Sturman JA, Gaull GE (1981) Sulfur amino acid metabolism in the developing rhesus monkey brain: subcellular studies of the methylation cycle and cystathione Β-synthase. J Neurochem 36: 1263–1271

    Google Scholar 

  • Sturman JA, Hayes KC (1980) The biology of taurine in nutrition and development. In: Draper HH (ed) Advances in nutritional research, vol 3. Plenum, New York, pp 231–299

    Google Scholar 

  • Toth E, Lajtha A, Sarhan S, Seiler N (1983) Anticonvulsant effects of some inhibitory neurotransmitter amino acids. Neurochem Res 8: 291–302

    Google Scholar 

  • Van Dorsser V, Barris D, Cordi A, Roba J (1983) Anticonvulsant activity of milacemide. Arch Int Pharmacodyn 266: 239–249

    Google Scholar 

  • Van Gelder (1983) A central mechanism of action for taurine: osmoregulation, bivalent cations, and excitation threshold. Neurochem Res 8: 687–699

    Google Scholar 

  • Westerberg E, Chapman AG, Meldrum BS (1983) Effect of 2-amino-7-phosphonoheptanoic acid on regional brain amino acid levels in fed and fasted rodents. J Neurochem 41: 1755–1760

    Google Scholar 

  • White WF (1985) The glycine receptor in the mutant mouse spastic (spa): strychnine binding characteristics and pharmacology. Brain Res 329: 1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapman, A.G., Hart, G.P. Anticonvulsant drug action and regional neurotransmitter amino acid changes. J. Neural Transmission 72, 201–212 (1988). https://doi.org/10.1007/BF01243420

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01243420

Keywords

Navigation