Skip to main content

Fluorescence and electron microscopic study of the tree shrew pineal organ

Summary

The fine structure of the pineal gland and the pineal innervation in the tree shrew were studied by electron microscopy and glyoxylic acid-induced fluorescence microscopy respectively. The parenchymal cells consist of pinealocytes, glial cells and pigment-containing cells. The pinealocytes are characterized by the presence of granular vesicles, synaptic ribbons, electron-dense bodies and small profiles of rER with dilated cisternae. Glial cells contain light cytoplasmic bodies, lipofuscin granules, bundles of microfilaments, and elongate profiles of rER with flattened cisternae which are often stacked together with light cytoplasmic bodies; the pigment-containing cells are unique in possessing giant pigment granules in the cytoplasm. The pinealocyte/glial cell/pigment cell in tree shrew pineals may be the same cell line of parenchymal cells at different ontogenetic stages. Pigment-containing cells contain pigment granules as a prominent cytoplasmic inclusion, suggesting they are senscent in secretory function. Both pinealocytes and glial cells contain structures suggesting secretory function such as welldeveloped Golgi complex and granular vesicles. The antigonadotrophic substances may be stored in granular vesicles. The present ultrastructural study supports the conclusion that tree shrew pineal organ is an endocrine gland which is heavily innervated by adrenergic nerves and possibly by cholinergic nerves.

This is a preview of subscription content, access via your institution.

References

  • Anderson, E.: The anatomy of bovine and ovine pineals. J. Ultrastruct. Res. suppl.8, 1–80 (1965).

    Google Scholar 

  • Campbell, C. B. G.: Taxonomic status of tree shrews. Science153, 436 (1966).

    PubMed  Google Scholar 

  • Chessman, D. M.: Structural elucidation of a gonadotrophic inhibitory substance for bovine pineal gland. Biochem. Biophysiol. Acta207, 247–253 (1970).

    Google Scholar 

  • Chiba, T., Hwang, B.-H., Williams, T. H.: A method for studying glyoxylic acid induced fluorescence and ultrastructure of monoamine neurons. Histochemistry49, 95–106 (1976).

    PubMed  Google Scholar 

  • Clabough, J. W.: Ultrastructural features of the pineal gland in normal and light deprived golden hamsters. Z. Zellforsch.114, 151–164 (1971).

    PubMed  Google Scholar 

  • Cuello, A. C.: Ultrastructural characteristics and innervation of the pineal organ of the antarctic sealLeptonychotes weddelli. J. Morphol.141, 218–226 (1973).

    Google Scholar 

  • Hwang, B. H.: An electron microscopic study on acid phosphatase localization in rat pineal cells. Thesis, National Taiwan University, College of Medicine, Department of Anatomy, Taipei, Taiwan, 1972.

    Google Scholar 

  • Kappers, J. A.: The development, topographical relations and innervation of the epiphysis cerebri in the albino rat. Z. Zellforsch.52, 163–215 (1960).

    PubMed  Google Scholar 

  • Karasek, M.: Ultrastructure of rat pineal gland in organ culture: unfluence of norepinephrine, dibutyryl cyclic adenosine 3′, 5′-monophosphate and adenohypophysis. Endocrinology64, 106–114 (1974).

    Google Scholar 

  • Kristic, R.: Ultracytochemistry of the synaptic ribbons in the rat pineal organ. Cell Tiss. Res.166, 135–143 (1976).

    Google Scholar 

  • Lin, H.-S., Hwang, B. H., Tseng, C.-Y.: Fine structural changes in the hamster pineal gland after blinding and superior cervical ganglionectomy. Cell Tiss. Res.158, 285–299 (1975).

    Google Scholar 

  • Meiniel, A.: L'épiphyse embryonnaire de Lacerta vivipara J. II. Etude en microscopie électronique de l'incorporation du 5-hydroxytryptophane3H(5-HTP-3H) au niveau des photorécepteurs rudimentaires sécrétoires (PRS). J. Neural Transm.39, 231–250 (1976).

    PubMed  Google Scholar 

  • Møllgaad, K., Møiler, M.: On the innervation of the human fetal pineal gland. Brain Res.52, 428–432 (1973).

    PubMed  Google Scholar 

  • Moszkowska, A., Citharel, A., L'Heritier, A., Ebels, I., Laplante, E.: Some new aspects of a sheep pineal gonadotropic inhibitory activity in in vitro experiments. Experientia30, 964–965 (1974).

    PubMed  Google Scholar 

  • O'Steen, W. K.: Suppression of ovarian activity in immature rats by serotonin. Endocrinology77, 937–939 (1966).

    Google Scholar 

  • Peters, A., Palay, S. L., Webster, H.: The fine structure of the nervous system, the neurons and supporting cells. Philadelphia: W. B. Saunders Company. 1976.

    Google Scholar 

  • Pévet, P.: On the presence of different populations of pinealocytes in the mammalian pineal gland. J. Neural Transm.40, 289–304 (1977).

    PubMed  Google Scholar 

  • Pévet, P., Collin, J. P.: Les pinéalocytes de mammifére: Diversité, homologies, origine. Etude chez la Taupe adulte (Talpa europaea L.) J. Ultrastruct. Res.57, 22–31 (1976).

    PubMed  Google Scholar 

  • Pévet, P., Kappers, J. A., Voute, A. M.: Morphologic evidence for differentiation of pinealocytes from photoreceptor cells in the adult noctule bat (Nyctalus noctula, Schreber). Cell Tiss. Res.182, 99–109 (1977).

    Google Scholar 

  • Reiter, R. J.: The pineal. Montreal: Eden Press. 1977.

    Google Scholar 

  • Reiter, R. J., Fraschini, F.: Endocrine aspects of the mammalian pineal gland: a review. Neuroendocrinology5, 219–255 (1969).

    PubMed  Google Scholar 

  • Romijn, H. J.: The ultrastructure of the rabbit pineal gland after sympathectomy, parasympathectomy, cutaneous illumination and continous darkness. J. Neural Transm.36, 183–194 (1975).

    PubMed  Google Scholar 

  • Romijn, H. J.: Structure and innervation of the pineal gland of the rabbit, Oryctolagus cuniculus (L). III. An electron microscopic investigation of the innervation. Cell Tiss. Res.157, 25–51 (1975 a).

    Google Scholar 

  • Romijn, H. J., Gelsena, A. J.: Electron microscopy of the rabbit pineal organ in vitro: evidence of norepinephrine-stimulated secretory activity of the Golgi apparatus. Cell Tiss. Res.172, 365–377 (1976).

    Google Scholar 

  • Romijn, H. J., Mud, M. T., Walters, P. S.: Electron microscopic evidence of glycogen storage in the dark pinealocytes of the rabbit pineal gland. J. Neural Transm.40, 69–79 (1977).

    PubMed  Google Scholar 

  • Sheridan, M. N., Keppel, J. F.: The effect of p-chlorophenylalanine (PCPA) and 6-hydroxydopamine (6-HD) on ultrastructural featues of hamster pineal parenchyma. Anat. Rec.169, 427 (1971).

    Google Scholar 

  • Sheridan, M. N., Reiter, R. J.: The fine structure of the pineal gland in the pocket gopher, Geomys bursarius. Am. J. Anat.136, 363–381 (1973).

    PubMed  Google Scholar 

  • Sterba, G., Hoheisel, G., Wegelin, R.: Peptide containing vesicles within neuro-neuronal synapses. Brain Res.169, 55–64 (1979).

    PubMed  Google Scholar 

  • Upson, R. H., Benson, B., Satterfield, V.: Quantitation of ultrastructural changes in the mouse pineal in response to continuous illumination. Anat. Rec.184, 311–324 (1976).

    PubMed  Google Scholar 

  • Wartenberg, H.: The mammalian pineal organ: electron microscopic studies on the fine structure of pinealocytes, glial cells and on the perivascular compartment. Z. Zellforsch.86, 74–97 (1968).

    PubMed  Google Scholar 

  • Wartenberg, H., Gusek, W.: Licht- und elektronenmikroskopische Beobachtungen über die Struktur der Epiphysis cerebri des Kaninchens. Prog. Brain Res.10, 296–315 (1965).

    PubMed  Google Scholar 

  • Welser, J. R., Hinsman, E. J., Stromberg, M. W.: Fine structure of the canine pinealocyte. Am. J. Vet. Res.29, 587–599 (1968).

    PubMed  Google Scholar 

  • Williams, T. H., Jew, J.: An improved method for perfusion fixation of neural tissues for electron microscopy. Tiss. Cell.7, 407–418 (1975).

    Google Scholar 

  • Wolfe, D. E.: The epiphyseal cells: an electron microscopic study of its intercellular relationships and intracellular morphology in the pineal body of the albino rat. Prog. Brain Res.10, 332–386 (1965).

    PubMed  Google Scholar 

  • Wurtman, R. J., Axelrod, J., Fischer, J. E.: Melatonin synthesis in the pineal gland: effect of light mediated by the sympathetic nervous system. Science143, 1328–1330 (1964).

    Google Scholar 

  • Wurtman, R. J., Axelrod, J., Kelly, D. E.: The pineal. New York-London: Academic Press. 1968.

    Google Scholar 

  • Zimmerman, B. L., Tso, M. O.: Morphologic evidence of photoreceptor differentiation of pinealocytes in the neonatal rat. J. Cell Biol.66, 60–75 (1975).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hwang, B.H. Fluorescence and electron microscopic study of the tree shrew pineal organ. J. Neural Transmission 53, 193–212 (1982). https://doi.org/10.1007/BF01243411

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01243411

Key words

  • Pinealocyte
  • glial cells
  • pigment
  • adrenergic innervation
  • ultrastructure