Skip to main content
Log in

Effect of tyrosine on brain catecholamine turnover in reserpine-treated rats

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

The injection of reserpine [2.5 mg/kg, intraperitoneally (i.p.)] increased brain concentrations of tyrosine and of the major catecholamine metabolites, 3-methoxy-4-hydroxy-phenylacetic acid (DOPAC), homovamllic acid (HVA), and 3-methoxy-4-hydroxy-phenylethylene-glycol-sulfate (MHPG-SO4) in the rat. In reserpine-treated animals, tyrosine administration (200 mg/kg, i.p.) caused further increases in brain tyrosine, DOPAC, and HVA, but not in brain MHPG-SO4. The increases in DOPAC and HVA levels were observed in a dopaminergic brain region (the corpus striatum) and a noradrenergic region (the cerebellum). These results support previous observations that catecholamine synthesis and release in both dopaminergic and noradrenergic neurons can depend in part upon brain tyrosine levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andén, N.-E., Roos, B.-E., Werdinius, B.: On the occurrence of homovanillic acid in brain and cerebrospinal fluid and its determination by a fluorimetric method. Life Sci.2, 448–458 (1963).

    Google Scholar 

  • Andén, N.-E., Roos, B.-E., Werdinius, B.: Effects of chlorpromazine, haloperidol and reserpine on the levels of phenolic acids in rabbit corpus striatum. Life Sci.3, 149–158 (1964).

    Google Scholar 

  • Bareggi, S. R., Genovese, E., Markey, K.: Short- and long-term effects of reserpine on the concentration of 1-(4-hydroxy-3-methoxyphenyl)-ethane-1,2-diol (MOPEG-SO4) in the brain of the rat. Br. J. Pharmacol.65, 573–578 (1979).

    PubMed  Google Scholar 

  • Bertler, A., Rosengren, E.: Occurrence and distribution of catechol amines in brain. Acta Physiol. Scand.47, 350–361 (1959).

    PubMed  Google Scholar 

  • Bertler, A.: Effect of reserpine on the storage of catechol amines in brain and other tissues. Acta Physiol. Scand.51, 75–83 (1961).

    Google Scholar 

  • Bunney, B. S., Walters, J. R., Roth, R. H., Aghajanian, G. K.: Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J. Pharmacol. Exp. Ther.185, 560–571 (1973).

    PubMed  Google Scholar 

  • Carlsson, A., Lindqvist, M., Magnusson, T., Waldeck, B.: On the presence of 3-hydroxytyramine in brain. Science127, 471 (1958).

    PubMed  Google Scholar 

  • Carlsson, A.: The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol. Rev.11, 490–493 (1959).

    PubMed  Google Scholar 

  • Carlsson., A., Lindqvist, M.: Dependence of 5-HT and catecholamine synthesis on concentrations of precursor amino-acids in rat brain. Naunyn-Schmiedeberg's Arch. Pharmacol.303, 157–164 (1978).

    Google Scholar 

  • Costa, E., Guidotti, A., Zivkovic, B.: Short- and long-term regulation of tyrosine hydroxylase. Adv. Biochem. Psychopharmacol.12, 161–175 (1974).

    PubMed  Google Scholar 

  • Felice, L. J., Felice, J. D., Kissinger, P. T.: Determination of catecholamines in rat brain parts by reverse-phase ion-pair liquid chromatography. J. Neurochem.31, 1461–1465 (1978).

    PubMed  Google Scholar 

  • Gibson, C. J., Wurtman, R. J.: Physiological control of brain catecholamine synthesis by brain tyrosine concentration. Life. Sci.22, 1399–1406 (1978).

    PubMed  Google Scholar 

  • Glowinski, J., Iversen, L. L.: Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H] dopa in various regions of the brain. J. Neurochem.13, 655–669 (1966).

    PubMed  Google Scholar 

  • Goldstein, M., Anagnoste, B., Shirron, C.: The effect of trivastal, haloperidol and dibutyryl cyclic AMP on [14C] dopamine synthesis in rat striatum. J. Pharm. Pharmacol.25, 348–351 (1973).

    PubMed  Google Scholar 

  • Harris, J. E., Morgenroth, V. H., III, Roth, R. H., Baldessarini, R. J.: Regulation of catecholamine synthesis in the rat brain in vitro by cyclic AMP. Nature252, 156–158 (1974).

    PubMed  Google Scholar 

  • Hefti, F.: A simple, sensitive method for measuring 3,4-dihydroxyphenylacetic acid and homovanillic acid in rat brain tissue using high-performance liquid chromatography with electrochemical detection. Life Sci.25, 775–781 (1979).

    PubMed  Google Scholar 

  • Hefti, F., Melamed, E., Wurtman, R. J.: Partial lesions of the dopaminergic nigrostriatal system in rat brain: biochemical characterization. Brain Res.195, 123–137 (1980).

    PubMed  Google Scholar 

  • Hillarp, N.-A., Fuxe, K., Dahlström, A.: Demonstration and mapping of central neurons containing dopamine, noradrenaline, and 5-hydroxy tryptamine and their reactions to psychopharmaca. Pharmacol. Rev.18, 727–741 (1966).

    PubMed  Google Scholar 

  • Holzbauer, M., Vogt, M.: Depression by reserpine of the noradrenaline concentration in the hypothalamus of the cat. J. Neurochem.1, 8–11 (1956).

    PubMed  Google Scholar 

  • Iggo, A., Vogt, M.: Preganglionic sympathetic activity in normal and in reserpine-treated cats. J. Physiol. (Lond.)150, 114–133 (1960).

    Google Scholar 

  • Joh, T. H., Park, D. H., Reis, D. J.: Direct phosphorylation of brain tyrosine hydroxylase by cyclic AMP-dependent protein kinase: mechanism of enzyme activation. Proc. Natl. Acad. Sci. USA75, 4744–4748 (1978).

    PubMed  Google Scholar 

  • Lovenberg, W., Ames, M. M., Lerner, P.: Mechanisms of acute regulation of tyrosine hydroxylase. In: Psychopharmacology: A Generation of Progress (Lpton, M. A., DiMascio, A., Killam, K. F., eds.), pp. 247–259. New York: Raven Press. 1978.

    Google Scholar 

  • Meek, J. L., Neff, N. H.: Fluorimetric estimation of 4-hydroxy-3-methoxyphenylethylen-glycol sulphate in brain. Br. J. Pharmacol.45, 435–441 (1972).

    PubMed  Google Scholar 

  • Melamed, E., Hefti, F., Wurtman, R. J.: Tyrosine administration increases striatal dopamine release in rats with partial nigrostriatal lesions. Proc. Natl. Acad. Sci. USA77, 4305–4309 (1980).

    PubMed  Google Scholar 

  • Nagatsu, T., Levitt, M., Udenfriend, S.: Tyrosine hydroxylase: the initial step in norepinephrine biosynthesis. J. Biol. Chem.239, 2910–2917 (1964).

    PubMed  Google Scholar 

  • Potter, J., Axelrod, J.: Subcellular localization of catecholamines in tissues of the rat. J. Pharmacol.142, 291–298 (1963).

    Google Scholar 

  • Roth, R. H., Morgenroth, R. V. III, Salzman, P. M.: Tyrosine hydroxylase: allosteric activation induced by stimulation of central noradrenergicneurones. Naunyn-Schmiedeberg's Arch. Pharmacol.289, 327–343 (1975).

    Google Scholar 

  • Scally, M. C., Ulus, I., Wurtman, R. J.: Brain tyrosine levels control striatal dopamine synthesis in haloperidol-treated rats. J. Neural Transm.41, 1–6 (1977).

    PubMed  Google Scholar 

  • Sved, A. F., Fernström, J. D., Wurtman, R. J.: Tyrosine administration reduces blood pressure and enhances brain norepinephrine release in spontaneously hypertensive rats. Proc. Natl. Acad. Sci. USA76, 3511–3514 (1979 a).

    PubMed  Google Scholar 

  • Sved, A. F., Fernstrom, J. D., Wurtman, R. J.: Tyrosine administration decreases serum prolactin levels in chronically reserpinized rats. Life Sci.25, 1293–1300 (1979 b).

    PubMed  Google Scholar 

  • Tagliamonte, A., Tagliamonte, P., Perez-Cruet, J., Stern, S., Gessa, G. L.: Effects of psychotropic drugs on tryptophan concentration in the rat brain. J. Pharmacol. Exp. Ther.177, 475–480 (1971).

    PubMed  Google Scholar 

  • Thoenen, H.: Comparison between the effect of neuronal activity and nerve growth factor on the enzymes involved in the synthesis of norepinephrine. Pharmacol. Rev.24, 255–267 (1972).

    PubMed  Google Scholar 

  • Vogt, M.: The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J. Physiol. (Lond.)123, 451–481 (1954).

    Google Scholar 

  • Waalkes, T. P., Udenfriend, S.: A fluorimetric method for estimation of tyrosine in plasma and tissues. J. Lab. Clin. Med.50, 733–736 (1957).

    PubMed  Google Scholar 

  • Wurtman, R. J., Larin, F., Mostafapour, S., Fernstrom, J. D.: Brain catechol synthesis: control by brain tyrosine concentration. Science185, 183–184 (1974).

    PubMed  Google Scholar 

  • Wurtman, R. J., Fernstrom, J. D.: Control of brain neurotransmitter synthesis by precursor availability and nutritional state. Biochem. Pharmacol.25, 1691–1696 (1976).

    PubMed  Google Scholar 

  • Wurtman, R. J., Scatty, M. C., Gibson, C. J., Hefti, F.: Relation between brain tyrosine and catecholamine synthesis. In: Catecholamines: Basic and Clinical Frontiers (Usdin, E., Kopin, I. J., Barchas, J. D., eds.), pp.64–66. New York: Pergamon Press. 1979.

    Google Scholar 

  • Zivkovic, B., Guidotti, A.: Changes of kinetic constant of striatal tyrosine hydroxylase elicited by neuroleptics that impair the function of dopamine receptors. Brain Res.79, 505–509 (1974).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oishi, T., Wurtman, R.J. Effect of tyrosine on brain catecholamine turnover in reserpine-treated rats. J. Neural Transmission 53, 101–108 (1982). https://doi.org/10.1007/BF01243401

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01243401

Keywords

Navigation