Skip to main content
Log in

Naloxone reversible reduction in brain monoamine synthesis following sciatic nerve stimulation

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

Brain monoaminergic neurons seem to be influenced by endogenous opioid systems as judged from largely indirect evidence. In an attempt to more directly study this interaction, we have analyzed the effect of sciatic nerve stimulation (rectangular pulses, frequency 3 Hz, pulse duration 0.2 msec, current intensity 6–20 times muscle twitch threshold) on thein vivo rate of tyrosine- and tryptophanhydroxylation, respectively, in the rat brain. This stimulation procedure has previously been shown to evoke naloxone reversible pain threshold elevation and a longlasting blood pressure reduction in rats, with maximum reached about 1.5 h after stimulation. The formation of DOPA and 5-HTP in various parts of the central nervous system during 30 min after inhibition of L-amino-acid-decarboxylase by NSD 1015 was measured. Two hours after the sciatic nerve stimulation procedure a significant decrease in DOPA formation was obtained in the cerebral cortex and in the spinal cord. This effect was reversed by pretreatment with a high dose of naloxone (15 mg/kg s.c, 10 min before stimulation). A reduction in 5-HTP formation was also obtained in the cerebral cortex, with a concomitant reduction in tryptophan concentration. These effects appeared to be antagonized by naloxone treatment. In the spinal cord there was no change in the 5-HTP accumulation after stimulation, but an increase after stimulation plus naloxone pretreatment was obtained. These data infer that the activity of some central monoamine systems, such as the NA pathways originating in locus coeruleus can be reduced by physiological activation of endogenous opioid systems. This effect of the acupuncture like stimulation procedure may be related to clinically reported actions of acupuncture stimulation, which apart from pain relief include, for example, antagonism of heroin abstinence symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghajanian, G. K.: Tolerance of locus coeruleus neurones to morphine and suppression of withdrawal response by clonidine. Nature276, 186–188 (1978).

    PubMed  Google Scholar 

  • Alper, R. H., Demarest, K. T., Moore, K. E.: Morphine differentially alters synthesis and turnover of dopamine in central neuronal systems. J. Neural Transm.48, 157–165 (1980).

    PubMed  Google Scholar 

  • Andén, N.-E.: Regulation of monoamine synthesis and utilization by receptors. In: Handbook of Experimental Pharmacology, Vol. 54 (Szekevej, L., ed.), pp. 429–462. Berlin-Heidelberg-New York: Springer. 1980.

    Google Scholar 

  • Atack, C. V., Magnusson, T.: Individual elution of noradrenaline (together with adrenaline), dopamine, 5-hydroxytryptamine and histamine from a single, strong cation exchange column, by means of mineral acidorganic solvent mixtures. J. Pharm. Pharmac.22, 625–627 (1970).

    Google Scholar 

  • Atack, C. V., Lindqvist, M.: Conjoint native orthophthaldialdehyde-condensate assays for the fluorimetric determination of 5-hydroxyindoles in brain. Naunyn-Schmiedeberg's Arch. Pharmacol.279, 267–284 (1973).

    Google Scholar 

  • Bédard, P., Carlsson, A., Lindqvist, M.: Effects of a transverse cerebral hemisection on 5-hydroxytryptamine metabolism in the rat brain. Naunyn-Schmiedeberg's Arch. Pharmacol.272, 1–15 (1972).

    Google Scholar 

  • Bird, S. J., Kuhar, M. J.: Iontophoretic application of opiates to the locus coeruleus. Brain Res.122, 523–533 (1977).

    PubMed  Google Scholar 

  • Bloom, F. E., Rossier, J., Battenberg, E. L., Bayon, A., French, E., Henriksen, S. J., Siggins, G. R., Segal, D., Browne, R., Ling, N., Guilleman, R.: Beta-endorphin: cellular localization, electrophysiological and behavioural effects. Adv. Biochem. Psychopharmacol.18, 89–109 (1978).

    PubMed  Google Scholar 

  • Bloom, F. E., Battenberg, E. L., Rossier, J., Ling, N., Guilleman, R.: Neurons containingβ-endorphin in rat brain exist separately from those containing enkephalin: Immunocytochemical studies. Proc. Natl. Acad. Sci. U.S.A.75, 1591–1595 (1978).

    PubMed  Google Scholar 

  • Carlsson, A., Davis, J. N., Lindqvist, M., Atack, G V.: Simultaneous measurement of tyrosine and tryptophan hydroxylase activities in brainin vivo using an inhibitor of the aromatic amino acid decarboxylase. Naunyn-Schmiedeberg's Arch. Pharmacol.275, 153–168 (1972).

    Google Scholar 

  • Carlsson, A., Lindqvist, M.: Effect of ethanol on the hydroxylation of tyrosine and tryptophan in rat brainin vivo. J. Pharm. Pharmacol.25, 437–440 (1973).

    PubMed  Google Scholar 

  • Chang Hsiang-Tung: Neurophysiological interpretation of acupuncture analgesia. Endeavour, New Series 4, No. 3 (1980).

  • Cheng, R. S., Pomeranz, B. H.: Electroacupuncture analgesia is mediated by stereospecific opiate receptors and is reversed by antagonists of type I receptors. Life Sci.26, 631–638 (1980).

    PubMed  Google Scholar 

  • Clement-Jones, V., McLaughlin, L., Lowry, P. J., Besser, G. M., Rees, L. H., Wen, H. L.: Acupuncture in heroinaddicts: Changes in met-enkephalin anβ-endorphin in blood and cerebrospinal fluid. The Lancetii, 380–383 (1979).

    Google Scholar 

  • Finley, J. C. W., Lindström, P., Petrusz, P.: Immunocytochemical localization ofβ-endorphin-containing neurons in the rat brain. Neuroendocrinology33, 28–42 (1980).

    Google Scholar 

  • Garcia-Sevilla, J. A., Ahtee, L., Magnusson, T., Carlsson, A.: Opiate-receptor mediated changes in monoamine synthesis in rat brain. J. Pharm. Pharmac.30, 613–621 (1978).

    Google Scholar 

  • Gold, M. S., Redmond, D. E., Kleber, H. D.: Clonidine blocks acute opiate-withdrawal symptoms. Lancetii, 599–602 (1978).

    Google Scholar 

  • Gomes, C., Svensson, T. H., Trolin, G.: Evidence for involvement of central noradrenergic neurons in the cardiovascular depression induced by morphine in the rat. J. Neural Transm.39, 33–46 (1976).

    PubMed  Google Scholar 

  • Guyenet, P. G., Aghajanian, G. K.: ACh, substance P and met-enkephalin in the locus coeruleus: Pharmacological evidence for independent sites of action. Eur. J. Pharm.53, 319–328 (1979).

    Google Scholar 

  • Haigler, H. J.: Morphine ability to block neuronal activity evoked by a nociceptive stimulus. Life Sci.19, 841–858 (1976).

    PubMed  Google Scholar 

  • Herkenham, M., Pert, C. B.:In vitro autoradiography of opiate receptors in rat brain suggests loci of “opiatergic” pathways. Proc. Natl. Acad. Sci. U.S.A77, 5532–5536 (1980).

    PubMed  Google Scholar 

  • Hökfelt, T., Ljungdahl, A., Terenius, L., Elde, R., Nilsson, G.: Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia: enkephalin and substance P. Proc. Natl. Acad. Sci. (Wash.)74, 3081–3085 (1977).

    Google Scholar 

  • Kehr, W., Carlsson, A., Lindqvist, M.: A method for the determination of 3, 4-dihydroxyphenylalanine (DOPA) in brain. Naunyn-Schmiedeberg's Arch. Pharmacol.274, 273–280 (1972).

    Google Scholar 

  • Korf, J., Bunney, B. S., Aghajanian, G. K.: Noradrenergic neurons: Morphine inhibition of spontaneous activity. Eur. J. Pharmac.25, 165–169 (1974).

    Google Scholar 

  • Lindvall, O., Björklund, A.: The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. Acta physiol. scand. Suppl.412, 1–48 (1974).

    PubMed  Google Scholar 

  • Mayer, D. J., Price, D. D., Rafii, A.: Antagonism of acupuncture analgesia in man by the narcotic antagonist naloxone. Brain Res.121, 368–372 (1977).

    PubMed  Google Scholar 

  • Nowycky, M. C., Walters, J. R., Roth, R. H.: Dopaminergic neurons: Effect of acute and chronic morphine administration on single cell activity and transmitter metabolism. J. Neural Transm.42, 99–116 (1978).

    PubMed  Google Scholar 

  • Nygren, L., Olson, L.: A new major projection from locus coeruleus: the main source of noradrenergic nerve terminals in the central and dorsal columns of the spinal cord. Brain Res.132, 85–93 (1977).

    PubMed  Google Scholar 

  • Pert, B. C., Kuhar, M. J., Snyder, S. H.: Autoradiographic localization of the opiate receptor in rat brain. Life Sci.16, 1849–1854 (1975).

    PubMed  Google Scholar 

  • Pomeranz, B., Chiu, D.: Naloxone blockade of acupuncture analgesia: endorphin implicated. Life Sci.19, 1757–1762 (1976).

    PubMed  Google Scholar 

  • Salzmann, P. M., Roth, T. H.: Role of impulse flow in the short-term regulation of norepinephrine biosynthesis. Progr. Neurobiol.13, 1–60 (1979).

    Google Scholar 

  • Simantov, R., Kuhar, M. J., Uhl, G. R., Snyder, S. H.: Opioid peptide enkephalin: immunohistochemical mapping in rat central nervous system. Proc. Natl. Acad. Sci. (Wash.)74, 2167–2171 (1977).

    Google Scholar 

  • Ungerstedt, U.: Histochemical studies on the effect of intracerebral and intraventricular injections of 6-hydroxydopamine on monoamine neurons in the rat brain. In: 6-Hydroxydopamine and Catecholamine Neurons (Malmfors, T., Thoenen, H., eds.), pp. 101–129. New York: North-Holland. 1971.

    Google Scholar 

  • Van Loon, G. R., De Souza, E. B.: Effects ofβ-endorphin on brain serotonin metabolism. Life Sci.23, 971–978 (1978).

    PubMed  Google Scholar 

  • Yao, T., Andersson, S., Thorén, P.: Long-lasting cardiovascular depressor response to somatic stimulation in spontaneously hypertensive rats. Acta physiol. scand.III, 109–111 (1981).

    Google Scholar 

  • Young, W. S., Bird, S. Y., Kuhar, M. J.: Iontophoresis of methionine-enkephalin in the locus coeruleus area. Brain Res.129, 366–370 (1977).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nissbrandt, H., Yao, T., Thorén, P. et al. Naloxone reversible reduction in brain monoamine synthesis following sciatic nerve stimulation. J. Neural Transmission 53, 91–100 (1982). https://doi.org/10.1007/BF01243400

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01243400

Key words

Navigation