Skip to main content
Log in

Assessment or central dopaminergic function using plasma-free homovanillic acid after debrisoquin administration

  • Original Papers
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

Central dopaminergic (DA) function in children and adults was assessed by monitoring plasma-free levels of the dopamine metabolite homovanillic acid (pHVA) before and after a single oral dose and chronic oral administration of debrisoquin. Debrisoquin inhibits peripheral metabolism of dopamine to HVA and does not cross the blood-brain barrier. By reducing peripheral formation of HVA through the use of debrisoquin, the remaining HVA in plasma more accurately reflects central DA activity. Debrisoquin administration resulted in marked reductions of pHVA in each of 12 patients studied. Eleven of the 12 subjects tolerated debrisoquin without physical or behavioral side effects. The debrisoquin administration method appears to be a safe and potentially valid technique for evaluating aspects of central dopaminergic function in children and adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams WB, Pocelinko R, Klausner M, Hanauer L, Whitman EN (1964) Clinical pharmacological studies with debrisoquin sulfate, a new antihypertensive agent. J New Drugs 4: 268–283

    Google Scholar 

  • American Psychiatric Association (1980) Diagnostic and statistical manual of mental disorders, 3rd edn. APA task force on nomenclature and statistics, Washington, DC

    Google Scholar 

  • Bacopoulos NG, Hattox SE, Roth RH (1979) 3,4-Dihydroxyphenylacetic acid and homovanillic acid in rat plasma: possible indications of central dopaminergic activity. Eur J Pharmacol 56: 225–236

    Google Scholar 

  • Baldessarini RJ, Tracy D (1978) Tardive dyskinesia. In: Lipton MA, DiMascio A, Killian KP (eds) Psychopharmacology: a generation of progress. Raven Press, New York, pp 993–1004

    Google Scholar 

  • Berger PA, Faull KF, Kilkowski J, Anderson PJ, Kraemer H, Davis K, Barchas JD (1980) CSF monoamine metabolites in depression and schizophrenia. Am J Psychiat 237: 174–180

    Google Scholar 

  • Bowers MB Jr, Heninger GR, Sternberg D (1980) Clinical processes and central dopaminergic activity in psychotic disorders. Commun Psychopharm 4: 177–188

    Google Scholar 

  • Bowers MB Jr, Swigar ME, Jatlow PI, Goicoechea N (1984) Plasma catecholamine metabolites and early response to haloperidol. J Clin Psychiat 45: 248–251

    Google Scholar 

  • Brown WA, Laughren T (1981) Low serum prolactin and early relapse following neuroleptic withdrawal. Am J Psychiat 138: 237–239

    Google Scholar 

  • Butler IJ, Koslow SH, Seifert WE, Caprioli RM, Singer HS (1979) Biogenic amine metabolism in Tourette syndrome. Ann Neurol 6: 37–39

    Google Scholar 

  • Cohen DJ, Shaywitz BA, Young JG, Carbonari CM, Nathanson JA, Lieberman D, Bowers MB Jr, Maas JW (1979) Central biogenic amine metabolism in children with the syndrome of chronic multiple tics of Gilles de la Tourette syndrome: norepinephrine, serotonin, and dopamine. J Am Acad Child Psychiat 18: 320–341

    Google Scholar 

  • Cutler NR, Jeste DV, Karoum F, Wyatt RJ (1982) Low-dose apomorphine reduces serum homovanillic acid concentrations in schizophrenic patients. Life Sci 30: 753–756

    Google Scholar 

  • Davis KL, Davidson M, Mohs RC, Kendler KS, Davis BM, Johns CA, DeNigris Y, Horvath TB (1985) Plasma homovanillic acid concentration and the severity of schizophrenic illness. Science 227: 1601–1602

    Google Scholar 

  • Evans DA, Mahgoub A, Sloan TP, Idle JR, Smith RL (1980) A family and population study of the genetic polymorphism of debrisoquin oxidation in a white British population. J Med Genet 17: 103–105

    Google Scholar 

  • Flückinger E, del Pozo E, Von Werder K (1982) Prolactin: physiology, pharmacology and clinical findings. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Harcherik D, Leckman JF, Detlor J, Cohen DJ (1984) A new instrument for clinical studies of Tourette's syndrome. J Am Acad Child Psychiat 23: 153–160

    Google Scholar 

  • Harris PQ, Brown SJ, Friedman MJ, Bacopoulos NG (1984) Plasma, drug and homovanillic acid levels in psychotic patients receiving neuroleptics. Biol Psychiat 19: 849–860

    Google Scholar 

  • Hoeldtke R, Rogawski M, Wurtman RJ (1974) Effect of selective destruction of central and peripheral catecholamine-containing neurons with 6-hydroxydopamine on catecholamine excretion in the rat. Br J Pharmacol 50: 265–270

    Google Scholar 

  • Johnstone EC, Crow TJ, Mashiter K (1977) Anterior pituitary hormone secretion in chronic schizophrenia-an approach to neurochemical mechanisms. Psychol Med 7: 223–228

    Google Scholar 

  • Karoum F, Wyatt R, Costa E (1974) Estimation of the contribution of peripheral and central noradrenergic neurons to urinary 3-methoxy-4-hydroxyphenylglycol in the rat. Neuropharmacology 13: 165–176

    Google Scholar 

  • Kendler KS, Heninger GR, Roth RH (1981) Brain contribution to the haloperidol-induced increase in plasma homovanillic acid. Eur J Pharmacol 71: 321–326

    Google Scholar 

  • Kendler KS, Heninger GR, Roth RH (1982) Influence of dopamine agonists on plasma and brain levels of homovanillic acid. Life Sci 30: 2063–2069

    Google Scholar 

  • Kendler KS, Mohs RC, Davis KL (1983) The effects of diet and physical activity on plasma homovanillic acid in normal human subjects. Psychiat Res 8: 215–223

    Google Scholar 

  • Kleinman JE, Weinberger DR, Rogol AD, Bigelow LB, Klein ST, Gillen JC, Wyatt RJ (1982) Plasma prolactin concentrations and psychopathology in chronic schizophrenia. Arch Gen Psychiat 39: 655–657

    Google Scholar 

  • Kopin I (1978) Measuring turnover of neurotransmitters in human brain. In: Lipton MA, DiMascio A, Killam KP (eds) Psychopharmacology: a generation of progress. Raven Press, New York, pp 933–942

    Google Scholar 

  • Laughren TP, Brown WA, Williams BW (1979) Serum prolactin and clinical state during neuroleptic treatment and withdrawal. Am J Psychiat 136, 108–110

    Google Scholar 

  • Linnoila M, Ninan PT, Scheinin M, Waters RN, Chang WH, Bartko J, van Kammen DR (1983) Reliability of norepinephrine and major monoamine metabolite measurements in CSF of schizophrenic patients. Arch Gen Psychiat 40: 1290–1294

    Google Scholar 

  • MacLeod RM, Scapagnini V (1980) (eds) Central and peripheral regulation of prolactin function. Raven Press, New York

    Google Scholar 

  • Maas JW, Contreras SA, Bowden CL, Weintraub JE (1985) Effects of debrisoquin on CSF and plasma HVA concentrations in man. Life Sci 36: 2163–2170

    Google Scholar 

  • Maas JW, Hattox SE, Greene NM, Landis DH (1980) Estimates of dopamine and serotonin synthesis by the awake human brain. J Neurochem 34: 1547–1549

    Google Scholar 

  • Maas JW, Hattox SE, Landis DH (1979) Differential effects on brain catecholamines by debrisoquin. Biochem Pharmacol 28: 3153–3156

    Google Scholar 

  • Maas JW, Hattox SE, Landis DH, Roth RH (1977) A direct method for studying 3-methoxy-4-hydroxyphenethyleneglycol (MHPG) production by brain in awake animals. Eur J Pharmacol 46: 221–228

    Google Scholar 

  • Maas JW, Hattox SE, Martin DM, Landis DH (1979) A direct method for determining dopamine synthesis and output of dopamine metabolites from brain in awake animals. J Neurochem 32: 839–843

    Google Scholar 

  • Marsden CD (1981) Extrapyramidal disease. In: Davison AN, Thompson RHS (eds) The molecular basis of neuropathology. Edward Arnold, London, pp 345–383

    Google Scholar 

  • Medina MA, Giachetti A, Shore PA (1969) On the physiological disposition and possible mechanism of the antihypertensive action of debrisoquin. Biochem Pharmacol 18: 891–901

    Google Scholar 

  • Moore DC, Glazer WM, Bowers MB Jr, Heninger GR (1983) Tardive dyskinesia and plasma homovanillic acid. Biol Psychiat 18: 1393–1401

    Google Scholar 

  • Naber B, Pickar D, Davis GC, Cohen RM, Jimerson DC, Elchisak MA, DeFraites EG, Kalin NH, Risch SC, Buchsbaum MS (1981) Naloxone effects on B-endorphin, cortisol, prolactin, growth hormone, HVA and MHPG in plasma of normal volunteers. Psychopharmacology 74: 125–128

    Google Scholar 

  • Pezzoli G, Panerai AE, DiGiulio A, Longo A, Passerini D, Carenzi A (1984) Methionine-enkephalin, substance P, and homovanillic acid in the CSF of parkinsonian patients. Neurology 34: 516–519

    Google Scholar 

  • Pickar D, La Barca R, Linnoila M, Roy A, Hommer D, Everett D, Paul SM (1984) Neuroleptic-induced decrease in plasma homovanillic acid and antipsychotic activity in schizophrenic patients. Science 225: 954–957

    Google Scholar 

  • Shaywitz SE, Shaywitz BA (1983) Biological influences in attentional disorders. In: Levine MD, Carey WB, Crocker AC, Gross RT (eds) Developmental-behavioral pediatrics. Saunders, Philadelphia, pp 746–755

    Google Scholar 

  • Silas JH, Jones J, Tucker GT, Townsend MM, Phillips CA, Smith AJ (1979) Dissociation of biochemical and hypotensive effects of debrisoquin in hypertensive patients. Eur J Clin Pharmacol 16: 81–86

    Google Scholar 

  • Singer HS, Butler IJ, Tune LE, Seifert WE, Coyle JT (1982) Dopaminergic dysfunction in Tourette Syndrome. Ann Neurol 12: 361–366

    Google Scholar 

  • Sloan TP, Lancaster R, Shah RR, Idle JR, Smith RL (1983) Genetically determined oxidation capacity and the disposition of debrisoquin. Br J Clin Pharmacol 15: 443–450

    Google Scholar 

  • Snyder SH (1982) Schizophrenia. Lancet ii: 970–974

    Google Scholar 

  • Solomon HM, Ashley C, Spirt N, Abrams WB (1969) The influence of debrisoquin on the accumulation and metabolism of biogenic amines by the human platelet,in vivo andin vitro. Clin Pharm Therapeut 10: 229–238

    Google Scholar 

  • Stahl SM, Berger PA (1982) Cholinergic and dopaminergic mechanisms in Tourette syndrome. In: Friedhoff AJ, Chase TN (eds) Gilles de la Tourette syndrome. Raven Press, New York, pp 141–150 (Advances in neurology, vol 35)

    Google Scholar 

  • Sternberg EE, Heninger GR, Roth RH (1983) Plasma homovanillic acid as an index of brain dopamine metabolism: Enhancement with debrisoquin. Life Sci 32: 2447–2452

    Google Scholar 

  • Swann AC, Maas JW, Hattox SE, Landis DH (1980) Catecholamine metabolites in human plasma as indices of brain function: Effects of debrisoquin. Life Sci 27: 1857–1863

    Google Scholar 

  • Wilson RG, Hamilton JR, Boyd WD, Forrest APM, Cole EN, Boyns AR, Griffiths K (1975) The effect of long term phenothorazine therapy on plasma prolactin. Br J Psychiat 127: 71–74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riddle, M.A., Leckman, J.F., Cohen, D.J. et al. Assessment or central dopaminergic function using plasma-free homovanillic acid after debrisoquin administration. J. Neural Transmission 67, 31–43 (1986). https://doi.org/10.1007/BF01243357

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01243357

Key words

Navigation