Skip to main content
Log in

Direct structural identification of polysaccharides from red algae by FTIR microspectrometry I: Localization of agar inGracilaria verrucosa sections

  • Original Papers
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Unlike carrageenans, agars have not been studied very extensively by infrared spectroscopy, in so far as the structures of this kind of polygalactanes are not as well defined as carrageenans. However, in a previous work we have carried out a vibrational analysis of both carrageenans and agars and some important assignments of the main absorptions have been made. Consequently, the present work has been undertaken in order to identify agars without any extraction directly in various seaweeds using the infrared microspectrometry method. The main advantage of this method is that the sample consists only of a dehydrated algal section. The red algaeGradlaria verrucosa has been the subject of the present study. In the first place, spectra of extracted agars were recorded, as they can help us to confirm the nature of the compound identified by this technique. In a second stage, spectra of different parts of the sections have been carried out. The comparison between the resulting spectra with those of the extracted polysaccharides, has demonstrated, firstly that the best results are obtained from the cortical area, because, as expected, the agar is mainly located in the cell wall of this area of the algae. Indeed, the feature bands of agars are all observed, especially the intense ones between 1000 and 1100 cm−1 and the more characteristic absorptions in the wavenumbers range below 1000 cm−1 so as the ones at 988, 965, 930, 890, 870, 771 and 741 cm−1. Secondly, it may be also identified in smaller amounts in the medullar area, the cells are greater than in the cortical area and the cytoplasm is preponderent. However, in the latter case a coexisting polysaccharide, present in a considerable quantity and called floridean starch (Its structure is not very well known, as it varies from one algae to another), masks the spectra of agar, as its spectrum is very similar to those of polygalactanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Araki,Proc. 4th Int. Biochem. Congr. 1958,1, 1.

    Google Scholar 

  2. R. Armisen, F. Galatas,FAO Technical Paper 1987,288, 1.

    Google Scholar 

  3. S. Arnott, A. Fullmer, W. E. Scott, J. C. M. Dea, R. Moorhouse, D. A. Rees,J. Mol. Biol. 1974,90, 268.

    Google Scholar 

  4. D. A. Rees,Adv. Carbohydr. Biochem. 1969,24, 267.

    Google Scholar 

  5. T. Stadler, D. Christiaen, M. C. Verdus, H. Morvan,Sciences de l'eau 1987,6, 105.

    Google Scholar 

  6. D. Christiaen, M. Lahaye, W. Yaphe,Northeast Algal Symposium, Woodshole, USA, 1985.

    Google Scholar 

  7. A. Mouradi-Givernaud, T. Givernaud, H. Morvan, J. Cosson,Bot. Mar. 1992,35, 153.

    Google Scholar 

  8. J. S. Graigie, C. Leigh, in:Handbook of Phycological Methods (J. A. Hellebust, J. S. Graigie, eds.), Cambridge University Press, 1978, pp. 60 and 143.

  9. M. C. Verdus, D. Christiaen, T. Stadler, H. Morvan,Can. J. Bot. 1986,64, 96.

    Google Scholar 

  10. M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, F. Smith,Anal. Chem. 1956,28, 350.

    Google Scholar 

  11. W. Yaphe, G. P. Arsenault,Anal. Biochem. 1965,13, 143.

    Google Scholar 

  12. F. M. Maas, I. Hoffmann, M. I. van Harmelen, L. J. de Kok,Plant Soil 1986,91, 129.

    Google Scholar 

  13. J. H. Slonecker,Meth. Carbohydr. Res. Chem. 1972,6, 20.

    Google Scholar 

  14. M. Sekkal, P. Legrand,Spectrochim. Acta 1993,49A, 209.

    Google Scholar 

  15. D. Christiaen, M. Bodard,Bot. Mar. 1983,26, 425.

    Google Scholar 

  16. M. Sekkal,Doctoral Thesis, Lille I University, France, 1990.

    Google Scholar 

  17. P. D. Vasko, J. Blackwell, J. L. Koenig,Carbohydr. Res. 1972,23, 407.

    Google Scholar 

  18. J. J. Cael, J. L. Koenig, J. Blackwell,Carbohydr. Res. 1974,32, 79.

    Google Scholar 

  19. T. W. Barrett,Spectrochim. Acta 1981,37A, 233.

    Google Scholar 

  20. M. Sekkal, G. Vergoten, M. Dauchez, P. Legrand,Spectrochim Acta 1992,48A, 4.

    Google Scholar 

  21. D. Christiaen, H. Morvan, M. C. Verdus, T. Stadler,Intl. Workshop on Plant Polysaccharides, Struct, and Funct. Vol. 92, 1984, p. 196.

    Google Scholar 

  22. D. J. Standoff, R. H. Stanley,Int. Seaweed Symp. 1969,6, 596.

    Google Scholar 

  23. C. Y. Liang, R. H. Marchessault,J. Polym. Sci. 1959,37, 385.

    Google Scholar 

  24. R. H. Marchessault, C. Y. Liang,J. Polym. Sci. 1962,59, 357.

    Google Scholar 

  25. C. Rochas, M. Lahaye, W. Yaphe,Bot. Mar. 1986,29, 335.

    Google Scholar 

  26. T. Malfait, H. Vandael, H. Vancauwelaert,Int. J. Biol. Macromol. 1989,11, 259.

    PubMed  Google Scholar 

  27. F. Bellanger, M. C. Verdus, V. Henocq, D. Christiaen,Hydrobiologia 1990,204–205, 527.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekkal, M., Huvenne, JP., Legrand, P. et al. Direct structural identification of polysaccharides from red algae by FTIR microspectrometry I: Localization of agar inGracilaria verrucosa sections. Mikrochim Acta 112, 1–10 (1993). https://doi.org/10.1007/BF01243315

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01243315

Key words

Navigation