Skip to main content
Log in

Tris (2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence in analytical science

  • Fundamental Review
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Ru(bpy) 2+3 electrogenerated chemiluminescence (CL) has rapidly gained importance as a sensitive and selective detection method in analytical science. The Ru(bpy) 2+3 ECL is observed when Ru(bpy) 3+3 reacts with Ru(bpy) +3 and yields an excited state Ru(bpy) 2+*3 . ECL emission can also be obtained when a variety of oxidants and reductants react with the reduced or oxidized forms of Ru(bpy) 2+3 . Either the reductant or the oxidant can be treated as an analyte. The Ru(bpy) 2+3 ECL is used as a detection method for the determination of oxalate and a variety of amine-containing analytes without derivatization in flowing streams such as flow injection and HPLC. When the ECL format is used as a detector for HPLC, unstable post-column reagent addition can often be eliminated and, the problems of both sample dilution and band broadening can be avoided because the Ru(bpy) 3+3 species are generatedin situ in the reaction/observation flow cell. Since NADH is sensitively detected with the Ru(bpy) 2+3 ECL, many clinically important analytes can be detected by coupling them to dehydrogenase enzymes that utilize β-nicotinamide adenine cofactors to convert NAD+ to NADH. Ru(bpy) 2+3 -derivatives are used as CL labels for immunoassay and PCR assay with Ru(bpy) 2+3 /tripropylamine ECL system. The Ru(bpy) 2+3 ECL label can be sensitively determined at subpicomolar concentrations, along with an extremely wide dynamic range of greater than six orders of magnitude. Furthermore, it can eliminate disposal and lifetime problems inherent in radio immunoassays. In this paper, basic principles of the Ru(bpy) 2+3 ECL are discussed. In addition, analytical applications of the Ru(bpy) 2+3 ECL are illustrated with examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Campbell,Chemiluminescence: Principles and Applications in Biology and Medicine, Ellis Horwood, England, 1988, Chapter 1.

    Google Scholar 

  2. L. J. Kricka, G. H. G. Thorpe,Analyst 1983,108, 1274.

    Google Scholar 

  3. M. L. Grayeski,Anal. Chem. 1987,59, 1243A.

    Google Scholar 

  4. A. Townshend,Analyst 1990,115, 495.

    Google Scholar 

  5. T. A. Nieman, in:Chemiluminescence and Photochemical Reaction Detection in Chromatography (J. W. Briks, ed.), VCH, New York, 1989, Chapter 4.

    Google Scholar 

  6. T. A. Nieman, in:Luminescence Techniques in Chemical and Biochemical Analysis (W. R. G. Baeyens, D. De Keukeleire, K. Korkidis, eds.), Marcel Dekker, New York, 1991, Chapter 17.

    Google Scholar 

  7. T. A. Nieman, in:Encyclopedia of Analytical Science, Academic Press, New York, 1994 (Chemiluminescence, (a) Overview of Techniques, (b) Liquid Phase Chemiluminescence).

    Google Scholar 

  8. A. W. Knight, G. M. Greenway,Analyst 1994,119, 879.

    Google Scholar 

  9. A. Juris, B. Balzani, E Barigelletti, S. Campagna, P. Belser, A. VonZelewsky,Coord. Chem. Rev. 1988,84, 85.

    Google Scholar 

  10. D. M. Hercules, F. E. Lytle,J. Am. Chem. Soc. 1966,88, 4745.

    Google Scholar 

  11. N. E. Tokel, A. J. Bard,J. Am. Chem. Soc. 1972,94, 2862.

    Google Scholar 

  12. N. E. Tokel-Tokvorya, R. E. Hemingway, A. J. Bard,J. Am. Chem. Soc. 1973,95, 6582.

    Google Scholar 

  13. I. Rubinstein, A. J. Bard,J. Am. Chem. Soc. 1981,103, 512.

    Google Scholar 

  14. D. M. Hercules, F. E. Lytle,Photochem. Photobiol. 1971,13, 123.

    Google Scholar 

  15. J. B. Noffsinger, N. D. Danielson,Anal. Chem. 1987,59, 865.

    Google Scholar 

  16. K. Uchikura, M. Kirisawa,Anal. Sci. 1991,7, 803.

    Google Scholar 

  17. L. He, K. A. Cox, N. D. Danielson,Anal. Lett. 1990,23, 195.

    Google Scholar 

  18. S. N. Brune, D. R. Bobbitt,Talanta 1991,38, 419.

    Google Scholar 

  19. S. N. Brune, D. R. Bobbitt,Anal. Chem. 1992,64, 166.

    Google Scholar 

  20. K. Uchikura, M. Kirisawa,Chem. Lett. 1991, 1373.

  21. T. M. Downey, T. A. Nieman,Anal. Chem. 1992,64, 261.

    PubMed  Google Scholar 

  22. H. S. White, A. J. Bard,J. Am. Chem. Soc. 1982,104, 6891.

    Google Scholar 

  23. J. K. Leland, M. J. Powell,J. Electrochem. Soc. 1990,137, 3127.

    Google Scholar 

  24. J. Gonzales-Velasco, I. Rubinstein, R. J. Crutchley, A. B. P. Lever, A. J. Bard,Inorg. Chem. 1983,22, 822.

    Google Scholar 

  25. J. Gonzales-Velasco,J. Phys. Chem. 1988,92, 2202.

    Google Scholar 

  26. S. Yamazaki-Nishida, Y. Harima, K. Yamashita,J. Electroanal. Chem. Interfacial Electrochem. 1990,283, 455.

    Google Scholar 

  27. K. Yamashita, S. Yamazaki-Nishida, Y. Harima, A. Sewaga,Anal. Chem. 1991,63, 872.

    Google Scholar 

  28. P. M. Block, P. S. Cartwright, H. P. J. M. Decker, R. D. Gillard,J. Chem. Soc. Chem. Commun. 1987,1232.

  29. P. McCord, A. J. Bard,J. Electroanal. Chem. 1991,318, 91.

    Google Scholar 

  30. J. K. Leland,Unpublished Result, IGEN Inc.

  31. C. R. Martin, T. A. Rhoades, J. A. Ferguson,Anal. Chem. 1982,54, 1639.

    Google Scholar 

  32. R. B. Moore III, C. R. Martin,Anal. Chem. 1986,58, 2570.

    Google Scholar 

  33. R. B. Moore III, C. R. Martin,Macromolecules 1988,21, 1334.

    Google Scholar 

  34. J. A. Cox, T. Gray, B. K. Das,J. Electroanal. Chem. 1988,247, 315.

    Google Scholar 

  35. K. A. Striebel, G. G. Scherer, O. Haas,J. Electroanal Chem. 1991,304, 289.

    Google Scholar 

  36. N. Oyama, F. C. Anson,J. Electrochem. Soc. 1980,127, 247.

    Google Scholar 

  37. I. Rubinstein, A. J. Bard,J. Am. Chem. Soc. 1980,102, 6641.

    Google Scholar 

  38. I. Rubinstein, A. J. Bard,J. Am. Chem. Soc. 1981,103, 5007.

    Google Scholar 

  39. H. S. White, J. Leddy, A. J. Bard,J. Am. Chem. Soc. 1982,104, 4811.

    Google Scholar 

  40. C. R. Martin, I. Rubinstein, A. J. Bard,J. Am. Chem. Soc. 1982,104, 4817.

    Google Scholar 

  41. J. Leddy, A. J. Bard,J. Electroanal. Chem. 1985,189, 203.

    Google Scholar 

  42. W. J. Vining, T. J. Meyer,J. Electroanal. Chem. 1987,237, 191.

    Google Scholar 

  43. A. F. Martin, T. A. Nieman,Anal. Chim. Acta 1993,281, 475.

    Google Scholar 

  44. N. Egashira, H. Kumasako, K. Ohga,Anal. Sci. 1990,6, 903.

    Google Scholar 

  45. H. D. Abruña, A. J. Bard,J. Am. Chem. Soc. 1982,104, 2641.

    Google Scholar 

  46. C. J. Zhong, M. D. Porter,Anal. Chem. 1995,67, 709A.

    Google Scholar 

  47. T. E. Mallouk, D. J. Harrison (eds.),Interfacial Design and Chemical Sensing, ACS Symposium Series, American Chemical Society, Washington, DC, 1994.

    Google Scholar 

  48. A. Ulman,Introduction to Thin Organic Films: From Langmuir-Blodgett to Self-Assembly, Academic Press, Boston, 1991.

    Google Scholar 

  49. X. Zhang, A. J. Bard,J. Phys. Chem. 1988,92, 5566.

    Google Scholar 

  50. C. J. Miller, P. McCord, A. J. Bard,Langmuir 1991,7, 2781.

    Google Scholar 

  51. Y. S. Obeng, A. J. Bard,Langmuir 1991,7, 191.

    Google Scholar 

  52. W. A. Jackson, D. R. Bobbitt,Microchem. J. 1994,49, 99.

    Google Scholar 

  53. Y. Sato, K. Uosaki,J. Electroanal. Chem. 1995,384, 57.

    Google Scholar 

  54. I. Rubinstein, C. R. Martin, A. J. Bard,Anal. Chem. 1983,55, 1580.

    PubMed  Google Scholar 

  55. D. Ege, W. G. Becker, A. J. Bard,Anal. Chem. 1984,56, 2413.

    PubMed  Google Scholar 

  56. G. F. Blackburn, H. P. Shah, J. H. Kenten, J. Leland, R. A. Kamin, J. Link, J. Peterman, M. J. Powell, A. Shah, D. B. Talley, S. K. Tyagi, E. Wilkins, T. G. Wu, R. J. Massey,Clin. Chem. 1991,37, 1534.

    PubMed  Google Scholar 

  57. L. S. Kuhn, A. Weber, S. G. Weber,Anal. Chem. 1990,62, 1613.

    Google Scholar 

  58. J. Preston, T. A. Nieman,Anal. Chem. 1996,68, 966.

    Google Scholar 

  59. G. P. Jirka, T. A. Nieman,Mikrochim. Acta 1994,113, 339.

    Google Scholar 

  60. A. W. Knight, G. M. Greenway, E. D. Chesmore,Anal. Proc. 1995,32, 125.

    Google Scholar 

  61. W. Y. Lee, T. A. Nieman,Anal. Chem. 1995,67, 1789.

    Google Scholar 

  62. N. W. Barnett, T. A. Bowser, R. A. Russel,Anal. Proc. 32, 57.

  63. N. W. Barnett, T. A. Bowser, R. D. Gerardi, B. Smith,Anal. Chim. Acta 1996,309, 309.

    Google Scholar 

  64. L. L. Shultz, J. S. Stoyanoff, T. A. Nieman,Anal. Chem. 1996,68, 349.

    Google Scholar 

  65. W. A. Jackson, D. R. Bobbitt,Anal. Chim. Acta 1994,285, 309.

    Google Scholar 

  66. W. Y. Lee, T. A. Nieman,J. Chromatogr. A. 1994,659, 111.

    Google Scholar 

  67. N. D. Danielson, L. He, J. B. Noffsinger, L. Trelli,J. Pharm. Biomed. 1989,7, 1281.

    Google Scholar 

  68. J. A. Holeman, N. D. Danielson,Anal. Chim. Acta 1993,227, 55.

    Google Scholar 

  69. G. M. Greenway, A. W. Knight, P. J. Knight,Analyst 1995,120, 2549.

    Google Scholar 

  70. A. W. Knight, G. M. Greenway,Analyst 1995,120, 2543.

    Google Scholar 

  71. G. M. Greenway, P. J. Knight,Anal. Proc. 1995,32, 251.

    Google Scholar 

  72. W. Y. Lee,Ph. D. Thesis, University of Illinois at Urbana-Champaign, 1995.

  73. W. R. Seitz, D. M. Hercules, in:Chemiluminescence and Bioluminescence (M. J. Cormier, D. M. Hercules, J. Lee, eds.), Plenum, New York, 1973, pp. 427–449.

    Google Scholar 

  74. D. S. Hage, in:HPLC Detector: Newer Methods (G. Patonay, ed.), VCH, New York, 1992, Chapter 3.

    Google Scholar 

  75. W. Y. Lee, T. A. Nieman,Anal. Chim. Acta in press.

  76. J. B. Noffsinger, N. D. Danielson,J. Chromatogr. 1987,387, 520.

    Google Scholar 

  77. K. Uchikura, M. Kirisawa,Anal. Sci. 1991,7, 971.

    Google Scholar 

  78. M. A. Targrove, N. D. Danielson,J. Chromatogr. Sci. 1990,28, 505.

    Google Scholar 

  79. J. A. Holeman, N. D. Danielson,J. Chromatogr. A. 1994,679, 277.

    PubMed  Google Scholar 

  80. J. A. Holeman, N. D. Danielson,J. Chromatogr. Sci. 1995,33, 297.

    PubMed  Google Scholar 

  81. K. Uchikura, M. Kirisawa, A. Sugii,Anal. Sci. 1993,9, 121.

    Google Scholar 

  82. D. R. Skotty, T. A. Nieman,J. Chromatogr., B. Biomed. Appl. 1995,665, 27.

    Google Scholar 

  83. A. J. Tudos, J. J. Ozinga, H. Poppe, W. Th. Kok,Anal. Chem. 1990,62, 367.

    Google Scholar 

  84. D. R. Skotty, W. Y. Lee, T. A. Nieman,Anal. Chem. 1996,68, 1530.

    Google Scholar 

  85. A. F. Martin,Ph. D. Thesis, University of Illinois at Urbana-Champaign, 1995.

  86. K. Yokoyama, S. Sasaki, K. Ikebukuro, T. Takeuchi, I. Karube, Y. Tokitsu, Y. Masuda,Talanta 1994,31, 1035.

    Google Scholar 

  87. F. Jameison R. I. Sanchez, L. Dong, J. K. Leland, D. Yost, M. T. Martin,Anal. Chem. 1996,68, 1298.

    Google Scholar 

  88. J. H. Kenten, J. Casadei, J. Link, S. Lupold, J. Willey, M. J. Powell, A. Rees, R. J. Messey,Clin. Chem. 1991,37, 1626.

    PubMed  Google Scholar 

  89. D. L. Gatto-Menking, H. Yu, J. G. Bruno, M. T. Goode, M. Miller, A. W. Zulich,Biosensors and Bioelectronics 1995,10, 501.

    PubMed  Google Scholar 

  90. J. DiCesare, B. Grossman, E. Katz, E. Picozza, R. Ragusa, T. Woundenberg,Biotechniques 1993,15, 152.

    PubMed  Google Scholar 

  91. X. H. Xu, H. C. Yang, T. E. Mallouck, A. J. Bard,J. Am. Chem. Soc. 1994,116, 8386.

    Google Scholar 

  92. X. H. Xu, A. J. Bard,J. Am. Chem. Soc. 1995,117, 2627.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, WY. Tris (2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence in analytical science. Mikrochim Acta 127, 19–39 (1997). https://doi.org/10.1007/BF01243160

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01243160

Key words

Navigation