Skip to main content
Log in

Electrochemical studies of 9,10-anthraquinone interacting with hemoglobin and determination of hemoglobin

  • Original Papers
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Electrochemical investigation of the interaction of 9,10-anthraquinone (AQ) with hemoglobin (HB) on a mercury electrode is reported for the first time. On addition of hemoglobin to an anthraquinone solution, both the reduction and oxidation currents decrease, with increasing peak separation. In the presence of hemoglobin, no new peaks appear, but the electrochemical parameters (standard rate constantk s and diffusion coefficientD) change significantly. Reaction of anthraquinone with hemoglobin forms an electrochemically active complex HB-AQ. The equilibrium constant for this complex is calculated to be 3.27 × 105 l/mol. A satisfactory result has been obtained for the determination of hemoglobin in clinical blood samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Scheller, M. Jänchen, G. Etzold, H. Will,Bioelectrochem. Bioenerg. 1974,1, 478.

    Google Scholar 

  2. F. Scheller,Bioelectrochem. Bioenerg. 1977,4, 490.

    Google Scholar 

  3. B. A. Kuznetsov, G. P. Shumakovich, N. M. Mestechkina,Bioelectrochem. Bioenerg. 1977,4, 512.

    Google Scholar 

  4. J. Ye, R. P. Baldwin,Anal. Chem. 1988,60, 2263.

    PubMed  Google Scholar 

  5. S. Song, S. Dong,Bioelectrochem. Bioenerg. 1988,19, 337.

    Google Scholar 

  6. S. Kwee,Bioelectrochem. Bioenerg. 1986,16, 99.

    Google Scholar 

  7. Y. Zhu, S. Dong,Electrochim. Acta 1990,35, 1139.

    Google Scholar 

  8. K. Venkataraman,The Chemistry of Synthetic Dyes, vol. II, Academic Press, New York, 1952.

    Google Scholar 

  9. J. F. McKellar,Radiat. Res. Rev. 1971,3, 141.

    Google Scholar 

  10. A. V. El'tsov, O. P. Studzinskii, V. M. Grebenkina,Russ. Chem. Rev. 1977,46, 93.

    Google Scholar 

  11. L. H. Leaver, inPhotochemistry of Dyed and Pigmented Polymers (N. S. Alien, J. F. McKellar, eds.), Applied Science Publishers, Barking, 1980.

    Google Scholar 

  12. J. M. Bruce, inThe Chemistry of Quinonoid Compounds, vol. 1 (S. Patai, ed.), Wiley, New York, 1974.

    Google Scholar 

  13. N. H. Furman, K. G. Stone,J. Am. Chem. Soc. 1948,70, 3055.

    Google Scholar 

  14. G. A. Qureshi, G. Svehla, M. A. Leonard,Analyst 1979,104, 705.

    Google Scholar 

  15. F. Capitán, A. Guiraum, J. L. Vilchez, J. F. Arenas,Can. J. Chem. 1979,57, 3243.

    Google Scholar 

  16. F. Capitán, E. Alvarez-Manzaneda, J. L. Vilchez,Proc. Indian. Acad. Sci, (Chem. Sci.) 1984,93, 59.

    Google Scholar 

  17. F. Capitán, J. L. Vilchez, A. Navalón,Analyst 1982,707, 953.

    Google Scholar 

  18. F. Capitán, A. Guiraum, J. L. Vilchez,Can. J. Chem. 1981,59, 1201.

    Google Scholar 

  19. H. M. Berman, P. R. Young,Annu. Rev. Biophys. Bioeng. 1981,10, 87.

    PubMed  Google Scholar 

  20. E. F. Gale, E. Cundliffe, P. E. Reynolds, M. H. Richmond, M. Waring, inThe Molecula Basis Antibiotic Action, Wiley London, 1972, p 173.

    Google Scholar 

  21. M. J. Waring,J. Mol. Biol. 1970,54, 247.

    PubMed  Google Scholar 

  22. L. S. Lerman,J. Mol. Biol. 1961,3, 18.

    PubMed  Google Scholar 

  23. M. J. Carter, M. Rodriguez, A. J. Bard,J. Am. Chem. Soc. 1989,111, 8901.

    Google Scholar 

  24. F. Qu, N.-Q. Li, Y.-Y. Jiang,Anal. Chim. Acta 1997,344, 97.

    Google Scholar 

  25. F. Qu, N.-Q. Li, Y.-Y. Jiang,Talanta 1998,45, 787.

    Google Scholar 

  26. F. Qu, N.-Q. Li, Y.-Y. Jiang,Microchem. J. 1998,58, 39.

    Google Scholar 

  27. K.-T. Lee, A.-M. Ling,Mikrochim. Acta 1969,5, 995.

    PubMed  Google Scholar 

  28. H. B. Collier,Clin. Biochem. 1974,7, 331.

    PubMed  Google Scholar 

  29. E. O. Espinoza, M. A. Kirms, M. S. Filipek,J. Forensic Sci. 1996,41, 804.

    PubMed  Google Scholar 

  30. G. M. Zhu, K. F. Ma,Sepu 1996,14, 400.

    Google Scholar 

  31. H.-Y. Chen, H.-X. Ju, Y.-G. Xun,Anal. Chem. 1994,66, 4538.

    Google Scholar 

  32. J. Zhou, E. Wang,Bull. Science (in Chinese) 1991,36, 240.

    Google Scholar 

  33. H.-X. Ju, L. Dong, H.-Y. Chen,Anal. Lett. 1996,29, 587.

    Google Scholar 

  34. H.-X. Ju, H.-B. Sun, H.-Y. Chen,Anal. Chim. Acta 1996,327, 125.

    Google Scholar 

  35. G.-X. Li, Y.-T. Long, H.-Y. Chen, D.-X. Zhu,Fresenius J. Anal Chem. 1996,356, 359.

    Google Scholar 

  36. B.-X. Ye, X.-Y. Zhou,Electroanalysis 1996,8, 1165.

    Google Scholar 

  37. Z. Zhu, N.-Q. Li,Microchem. J. 1998,59, 294.

    Google Scholar 

  38. Z. Zhu, N.-Q. Li,Microchem. J. 1998,59, 307.

    Google Scholar 

  39. A. J. Bard, L. R. Faulkner,Electrochemical Methods: Fundamental and Applications, Wiley, New York, 1980, p. 518.

    Google Scholar 

  40. E. Laviron,J. Electroanal, Chem. 1979,101, 19.

    Google Scholar 

  41. F. C. Anson,Anal. Chem. 1964,36, 932.

    Google Scholar 

  42. N.-Q. Li, J. Min,FenXiHuaXue 1989,17, 346.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Z., Li, NQ. Electrochemical studies of 9,10-anthraquinone interacting with hemoglobin and determination of hemoglobin. Mikrochim Acta 130, 301–308 (1999). https://doi.org/10.1007/BF01242920

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01242920

Key words

Navigation