Skip to main content
Log in

Enhanced visualization of polysaccharides from aqueous suspensions

  • Original Papers
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Aqueous suspensions of polysaccharides such as those prepared for domestic and industrial applications or present in natural waters, although difficult to visualize by conventional transmission electron microscopy (TEM) because of their poor electron density, can be characterized at the ultrastructural level by using milden bloc staining and contrast enhancement by energy-filtered TEM (EF-TEM). The advantages and drawbacks of the proposed method are discussed in relation to the different parameters controlling the quality of final images. It is shown, with synthetic polysaccharides, purified algal fibrils and lacustrine exocellular polymers as key examples, that optimizing specimen preparation and visualization parameters allows unbiased identification of organic substructures never revealed or strongly degraded by classical microscopic procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. VarkiGlycobiology 1993,3, 97.

    Google Scholar 

  2. G. G. Leppard,Sci. Tot. Environ. 1995,165, 103.

    Google Scholar 

  3. J. Buffle,Complexation Reactions in Aquatic Systems, an Analytical Approach, Ellis Horwood, Chichester, 1988.

    Google Scholar 

  4. P. A. Sandford, J. Baird, in:The Polysaccharides, Vol. 2, (G. O. Aspinal, ed.), Academic press, New York, 1983, p. 411.

    Google Scholar 

  5. R. L. Whistler, J. N. BeMiller,Industrial Gums, 2nd Ed., Academic Press, New York, 1973.

    Google Scholar 

  6. D. A. Rees, in:Advances in Carbohydrate Chemistry and Biochemistry, Vol. 24, (M. L. Wolfrom, R. S. Tipson, eds.), Academic press, New York, 1969, p. 267.

    Google Scholar 

  7. D. Cozzi, P. G. Desideri, L. Lepri, G. Ciantelli,J. Chromatogr. 1968,35, 396.

    Google Scholar 

  8. D. Cozzi, P. G. Desideri, L. Lepri, G. Ciantelli,J. Chromatogr. 1968,35, 405.

    Google Scholar 

  9. D. G. Allison,Microbiol. Europe,1993,Nov.–Dec., 16.

  10. H. C. Jones, I. L. Roth, W. M. Sanders,J. Bacteriol. 1969,99, 316.

    Google Scholar 

  11. C. Chenu,Soil Biol. Biochem. 1989,21, 299.

    Google Scholar 

  12. C. Chenu,Geoderma 1993,56, 143.

    Google Scholar 

  13. R. N. Yong, D. Mourato,Can. Geotech. J. 1990,27, 774.

    Google Scholar 

  14. T. Strycek, J. Acreman, A. Kerry, G. G. Leppard, M. V. Nermut, D. J. Kushner,Microb. Ecol. 1992,23, 53.

    Google Scholar 

  15. T. Bitter, H. M. Muir,Anal. Biochem. 1962,4, 330.

    Google Scholar 

  16. M. Fletcher, G. D. Floodgate,J. Gen. Microbiol. 1973,74, 325.

    Google Scholar 

  17. D. Perret, M. E. Newman, J.-C. Nègre, Y. Chen, J. Buffle,Wat. Res. 1994,28, 91.

    Google Scholar 

  18. D. Mavrocordatos, C.-P. Lienemann, D. Perret,Mikrochim. Acta 1994,117, 39.

    Google Scholar 

  19. D. Frösch, C. Westphal,Electron Microsc. Rev. 1989,2, 231.

    Google Scholar 

  20. D. Perret, G. G. Leppard, M. Müller, N. Belzile, R. DeVitre, J. Buffle,Wat. Res. 1991,25, 1333.

    Google Scholar 

  21. R. F. Egerton,Electron Energy-loss Spectroscopy in the Electron Microscope, Plenum, New York, 1986.

    Google Scholar 

  22. J. Fink, in:Advances in Electronics and Electron Physics, Vol. 75 (P. W. Hawkes, ed.), Academic Press, San Diego, 1989, p. 121.

    Google Scholar 

  23. L. Reimer, I. Fromm, P. Hirsch, U. Platte, R. Rennekamp,Ultramicroscopy,1992,46, 335.

    Google Scholar 

  24. D. Perret, C.-P. Lienemann, D. Mavrocordatos,Microsc. Microanal. Microstruct. 1995,6, 41

    Google Scholar 

  25. G. G. Leppard, in:Environmental Particles, Vol. 1. (J. Buffle, H. P. Van Leeuwen eds.), Lewis, Chelsea, 1992, p. 231.

    Google Scholar 

  26. A. W. Robards, A. J. Wilson,Procedures in Electron Microscopy, Wiley, Chichester, 1993.

    Google Scholar 

  27. K. J. Wilkinson, S. Stoll, J. Buffle,Fresenius J. Anal. Chem. 1995,351, 54.

    Google Scholar 

  28. C. W. J. Sorber, A. A. W. De Jong, N. J. Den Breejen, W. C. De Bruijn,Ultramicroscopy 1990,32, 55.

    Google Scholar 

  29. J. Colliex, C. Mory, A. L. Olins, D. E. Olins, M. Tence,J. Microsc. 1989,153, 1.

    Google Scholar 

  30. R. Door, K. D. Häberle, R. Martin,J. Microsc. 1994,174, 183.

    Google Scholar 

  31. L. Reimer, U. Zepke, J. Moesch, S. Schulze-Hillert, M. RossMessemer, W. Probst, E. Weimer,EEL Spectroscopy: a Reference Handbook of Standard Data for Identification and Interpretation of Electron Energy Loss Spectra and for Generation of Electron Spectroscopic Images, Carl Zeiss, Oberkochen, 1992.

    Google Scholar 

  32. B. T. Stokke, A. Elgsaeter, O. Smidsrød,Int. J. Biol. Macromol. 1986,8, 217.

    Google Scholar 

  33. B. T. Stokke, A. Elgsaeter, D. A. Brant, S. Kitamura,Macromolecules 1991,24, 6349.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lienemann, CP., Mavrocordatos, D. & Perret, D. Enhanced visualization of polysaccharides from aqueous suspensions. Mikrochim Acta 126, 123–129 (1997). https://doi.org/10.1007/BF01242673

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01242673

Key words

Navigation