, Volume 5, Issue 3–4, pp 173–183 | Cite as

Ladybird defence alkaloids: Structural, chemotaxonomic and biosynthetic aspects (Col.: Coccinellidae)

  • Désiré Daloze
  • Jean-Claude Braekman
  • Jacques M. Pasteels
Seminar papers


The defensive mechanisms which protect ladybird beetles (Coccinellidae) against predators are reviewed. Besides behavioural mechanisms, such as thanatosis and reflex bleeding, chemical defence mechanisms are playing a prevalent role. Indeed, ladybirds are protected not only by their smell, but also by repulsive alkaloids, most of which are considered to be of autogenous origin. In a few cases, dietarily-acquired substances are also involved. Particular emphasis is laid on the repellent alkaloids which are contained in the haemolymph of many species. The structures of 34 nitrogen-containing compounds isolated so far are presented, and their distribution within the family is discussed in the light of the most widely accepted classification of these beetles. To conclude, the mode of release of the alkaloids, their variation through the life cycle and their repellent and toxic properties are discussed, as well as the few biosynthetic data yet available.

Key words

chemical defence sequestration reflex bleeding alkaloids chemotaxonomy biosynthesis repellency toxicity Coleoptera Coccinellidae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Attygale AB, Xu SC, McCormick KD, Meinwald J, Blankespoor CL, Eisner T (1993a) Alkaloids of the Mexican bean beetleEpilachna varivestis (Coccinellidae). Tetrahedron 49:9333–9342Google Scholar
  2. Attygale AB, McCormick KD, Blankespoor CL, Eisner T, Meinwald J (1993b) Azamacrolides: a family of alkaloids from the pupal defensive secretion of a ladybird beetle (Epilachna varivestis). Proc Natl Acad Sci USA 90:5204–5208Google Scholar
  3. Attygalle AB, Blankespoor CL, Eisner T, Meinwald J (1994) Biosynthesis of a defensive alkaloid: epilachnene from oleic acid and serine. Proc Natl Acad Sci USA 91:12790–12793Google Scholar
  4. Ayer WA, Browne LM (1977) The ladybug alkaloids including synthesis and biosynthesis. Heterocycles 7:685–707Google Scholar
  5. Ayer WA, Bennett MJ, Browne LM, Purdham JT (1976) Defensive substances ofCoccinella transversoguttata andHippodamia caseyi, ladybugs indigenous to western Canada. Can J Chem 54:1807–1813Google Scholar
  6. Braconnier MF, Braekman JC, Daloze D, Pasteels JM (1985a) (Z)-1,17-diaminoocadec-9-ene, a novel aliphatic diamine from Coccinellidae. Experientia 41:519–520Google Scholar
  7. Braconnier MF, Braekman JC, Daloze D (1985b) Synthesis of the racemic form of (Z)-1,17-diaminooctadec-9-ene, an aliphatic diamine from Coccinellidae. Determination of the absolute configuration of the (+)-naturally-occurring antipode. Bull Soc Chim Belges 94:605–613Google Scholar
  8. Brown WV, Moore BP (1982) The defensive alkaloids ofCryptolaemus montrouzieri (Coleoptera: Coccinellidae). Aust J Chem 35:1255–1261Google Scholar
  9. Cuénot L (1896) La saignée réflexe. Arch Zool expérim et génér 3e série, t IVGoogle Scholar
  10. Daly JW, Garraffo HM, Spande TF, Jaramillo C, Rand AS (1994) Dietary source for skin alkaloids of poison frogs (Dendrobatidae)? J Chem Ecol 20:943–955Google Scholar
  11. De Bach P (ed) (1964) Biological Control of Insects, Pests and Weeds. GB-London: Chapman & HallGoogle Scholar
  12. de Jong PW, Holloway GJ, Brakefield PM, de Vos H (1991) Chemical defence of ladybird beetles (Coccinellidae). II. Amount of reflex fluid, the alkaloid adaline and individual variation in defence of 2-spot ladybirds (Adalia bipunctata). Chemoecology 1:15–19Google Scholar
  13. Eisner T, Goetz M, Aneshansley D, Ferstandig-Arnold G, Meinwald J (1986) Defensive alkaloid in the blood of Mexican bean beetle (Epilachna varivestis). Experientia 42:204–207Google Scholar
  14. Eisner T, Ziegler R, McCormick JL, Eisner M, Hoebeke ER, Meinwald J (1994) Defensive use of acquired substance (carminic acid) by predaceous insect larvae. Experientia 50:610–615Google Scholar
  15. Frazer JFD, Rothschild M (1960) Defence mechanisms in warninglycoloured moths and other insects. Proc 11th Interntl Congr Entomol 4:249–256Google Scholar
  16. Garraffo HM, Spande TF, Daly JW, Baldessari A, Gros EG (1993) Alkaloids from bufonid toads (Melanophryniscus): decahydroquinolines, pumiliotoxins and homopumiliotoxins, indolizidines, pyrrolizidines, and quinolizidines. J Nat Prod 56:357–373Google Scholar
  17. Happ GM, Eisner T (1961) Hemorrhage in a coccinellid beetle and its repellent effect on ants. Science 134:329–331Google Scholar
  18. Hedin PA, Gueldner RC, Henson RD, Thompson AC (1974) Volatile constituents of male and female boll weevils and their frass. J Insect Physiol 20:2135–2142Google Scholar
  19. Henson RD, Thompson AC, Hedin PA, Nichols PR, Neel WW (1975) Identification of precoccinelline in the ladybird beetle,Coleomegilla maculata. Experientia 31:145Google Scholar
  20. Hodek I (1973) Biology of Coccinellidae. CZ-Prague: Czechoslovak Academy of SciencesGoogle Scholar
  21. Hollande A Ch (1911) L'autohémorrhée ou le rejet du sang chez les Insectes (toxicologie du sang). Arch anat microscop morphol exptl 13:171Google Scholar
  22. Hollande A Ch (1926) La signification de l'autohémorrhée chez les insectes. Arch anat microscop morphol exptl 22:374–411Google Scholar
  23. Holloway GJ, de Jong PW, Brakefield PM, de Vos H (1991) Chemical defence in ladybird beetles (Coccinellidae). I. Distribution of coccinelline and individual variation in defence of 7-spot ladybirds (Coccinella septempunctata). Chemoecology 2:7–14Google Scholar
  24. Jones TH, Blum MS (1983) Arthropod alkaloids: distribution, functions, and chemistry. Pp 33–84in Pelletier SW (ed) Alkaloids. Vol 1, Chemical and Biological Perspectives. New York: John WileyGoogle Scholar
  25. Karlsson R, Losman D (1972) The crystal structure of the hemihydrochloride of coccinellin, the defensive N-oxide alkaloid of the beetleCoccinella septempunctata, a case of symmetrical hydrogen bonding. J Chem Soc, Chem Comm 626–627Google Scholar
  26. Kay D, Rothschild M, Alpin R (1969) Particles present in the haemolymph and defensive secretions of insects. J Cell Sci 4:369–379Google Scholar
  27. Kendall DA (1971) A note on reflex bleeding in the larvae of the beetleExochomus 4-pustulatus L. (Coleoptera: Coccinellidae). The Entomologist 104:232–235Google Scholar
  28. Lognay G, Hemptinne JL, Chan FY, Marlier M, Braekman JC, Daloze D, Pasteels JM (1996) Adalinine, a new piperidine alkaloid from the ladybird beetlesAdalia bipunctata L. andAdalia decempunctata L. J Nat Prod: in pressGoogle Scholar
  29. Majerus MEN (1994) Ladybirds. GB-London: Harper CollinsGoogle Scholar
  30. Marples NM, Brakefield PM, Cowie RJ (1989) Differences between the 7-spot and 2-spot ladybird beetles (Coccinellidae) in their toxic effects on a bird predator. Ecol Entomol 14:79–84Google Scholar
  31. McCormick KD, Attygalle AB, Xu SC, Svatos A, Meinwald J, Houck MA, Blankespoor CL, Eisner T (1994) Chilocorine: heptacyclic alkaloid from a coccinellid beetle. Tetrahedron 50:2365–2372Google Scholar
  32. Moore BP, Brown WV (1978) Precoccinelline and related alkaloids in the Australian soldier beetleChauliognathus pulchellus (Coleoptera: Cantharidae). Insect Biochem 8:393–395Google Scholar
  33. Moore BP, Brown WV (1981) Identification of warning odour components, bitter principles and antifeedants in an aposematic beetle:Metriorrhynchus rhipidus (Coleoptera: Lycidae). Insect Biochem 11:493–499Google Scholar
  34. Moore BP, Brown WV, Rothschild M (1990) Methylalkylpyrazines in aposematic insects, their host plants and mimics. Chemoecology 1:43–51Google Scholar
  35. Mueller RH, Thompson ME (1980) Synthesis of the ladybug alkaloids (±)-propyleine and (±)-isopropyleine. Modification of the published structure of propyleine. Tetrahedron Lett 21:1097–1100Google Scholar
  36. Pasteels JM, Deroe C, Tursch B, Braekman JC, Daloze D, Hootelé C (1973) Distribution et activités des alcaloîdes des coccinelles. J Insect Physiol 19:1771–1784Google Scholar
  37. Proksch P, Witte L, Wray V, Hartmann T (1993) Ontogenic variation of defensive alkaloids in the Mexican bean beetleEpilachna varivestis (Coleoptera: Coccinellidae). Entomol Gener 18: 1–7Google Scholar
  38. Rosenthal GA, Berenbaum MR (1991) Herbivores: Their Interaction with Secondary Metabolites. New York: Academic PressGoogle Scholar
  39. Rothschild M (1961) Defensive odours and Müllerian mimicry among insects. Trans R Entomol Soc Lond 113:101–122Google Scholar
  40. Rothschild M, von Euw J, Reichstein T (1970) Cardiac glycosides in the oleander aphidAphis nerii. J Insect Physiol 16:1141–1145Google Scholar
  41. Rothschild M, von Euw J, Reichstein T (1973) Cardiac glycosides in a scale insect (Aspidiotus), a ladybird (Coccinella) and a lacewing (Chrysopa). J Entomol (A) 48:89–90Google Scholar
  42. Sasaji H (1968) Phylogeny of the family Coccinellidae (Coleoptera). Etizenia n° 35:1–37Google Scholar
  43. Shi XW, Attygalle AB, Meinwald J, Houck MA, Eisner T (1995) Spirocyclic defensive alkaloid from a coccinellid beetle. Tetrahedron 51:8711–8718Google Scholar
  44. Timmermans M, Braekman JC, Daloze D, Pasteels JM, Merlin J, Declercq JP (1992) Exochomine, a dimeric alkaloid isolated fromExochomus quadripustulatus (Coleoptera: Coccinellidae). Tetrahedron Lett 33:1281–1284Google Scholar
  45. Tursch B, Daloze D, Dupont M, Hootelé C, Kaisin M, Pasteels JM, Zimmermann D (1971a) Coccinellin, the defensive alkaloid of the beetleCoccinella septempunctata. Chimia 25:307Google Scholar
  46. Tursch B, Daloze D, Dupont M, Pasteels JM, Tricot MC (1971b) A defense alkaloid in a carnivorous beetle. Experientia 27:1380Google Scholar
  47. Tursch B, Daloze D, Hootelé C (1972) The alkaloid ofPropylaea quatuordecimpunctata L. (Coleoptera: Coccinellidae). Chimia 26:74Google Scholar
  48. Tursch B, Braekman JC, Daloze D, Hootelé C, Losman D, Karlsson R, Pasteels JM (1973a) Adaline, a novel alkaloid fromAdalia bipunctata L. (Coleoptera: Coccinellidae). Tetrahedron Lett 201–202Google Scholar
  49. Tursch B, Chome C, Braekman JC, Daloze D (1973b) Synthesis and absolute configuration of adaline. Bull Soc Chim Belges 82:699–703Google Scholar
  50. Tursch B, Daloze D, Braekman JC, Hooteté C, Cravador A, Losman D, Karlsson R (1974) Structure and absolute configuration of hippodamine and convergine, two novel alkaloids from the American ladybugHippodamia convergens (Coleoptera: Coccinellidae). Tetrahedron Lett 409–412Google Scholar
  51. Tursch B, Daloze D, Braekman JC, Hootelé C, Pasteels JM (1975) The structure of myrrhine and the biosynthesis of coccinelline. Tetrahedron 31:1541–1543Google Scholar
  52. Tursch B, Braekman JC, Daloze D (1976) Arthropod alkaloids. Experientia 32:401–407Google Scholar
  53. Wang SF, Braekman JC, Daloze D, Pasteels JM, Soetens P, Handjieva NV, Kalushkov P (1996) Nx-quinaldyl-L-arginine-HCl a new defensive alkaloid fromSubcoccinella 24-punctata (Coleoptera: Coccinellidae). Experientia: in pressGoogle Scholar
  54. Watson WY (1956) A study of the phylogeny of the genera of the tribe Coccinellini (Coleoptera). Contr R Ontario Mus Zool Palaeont 42:1–52Google Scholar
  55. Witte L, Ehmke A, Hartmann T (1990) Interspecific flow of pyrrolizidine alkaloids. Naturwissenschaften 77:540–543Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • Désiré Daloze
    • 1
  • Jean-Claude Braekman
    • 1
  • Jacques M. Pasteels
    • 2
  1. 1.Laboratory of Bio-organic ChemistryUniversity of BrusselsBrusselsBelgium
  2. 2.Laboratory of Animal and Cellular BiologyUniversity of BrusselsBrusselsBelgium

Personalised recommendations