Skip to main content
Log in

The massless Thirring model: Positivity of Klaiber'sn-point functions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript


We present a simple solution to the problem of proving positivity of Klaiber'sn-point functions for the massless Thirring model. The corresponding fields are obtained as strong limits of explicitly given approximate fields, obviating reconstruction. By invoking recent results on the boson-fermion correspondence it is shown how the model can be formulated on the charged fermion Fock space. It is pointed out that the question of cyclicity of the vacuum is open, and that an affirmative answer is necessary to confirm the superselection sector picture of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Thirring, W.: A soluble relativistic field theory. Ann. Phys.3, 91–112 (1958)

    Google Scholar 

  2. Glaser, V.: An explicit solution of the Thirring model. Nuovo Cim.9, 990–1006 (1958)

    Google Scholar 

  3. Berezin, F. A.: The method of second quantization. New York: Academic Press 1966

    Google Scholar 

  4. Ruijsenaars, S. N. M.: On the two-point functions of some integrable relativistic quantum field theories. J. Math. Phys.24, 922–931 (1983)

    Google Scholar 

  5. Ruijsenaars, S. N. M.: Integrable quantum field theories and Bogoliubov transformations. Ann. Phys.132, 328–382 (1981)

    Google Scholar 

  6. Ruijsenaars, S. N. M.: Scattering theory for the Federbush, massless Thirring and continuum Ising models. J. Func. Anal.48, 135–171 (1982)

    Google Scholar 

  7. Johnson, K.: Solution of the equations for the Green's functions of a two dimensional relativistic field theory. Nuovo Cim.20, 773–790 (1961)

    Google Scholar 

  8. Klaiber, B.: The Thirring model. In: Quantum theory and statistical physics VolXA, pp. 141–176 Barut, A. O. Brittin, W. E. eds. Lectures in Theoretical Physics New York: Gordon and Breach, 1968

    Google Scholar 

  9. Wightman, A. S.: Introduction to some aspects of the relativistic dynamics of quantized fields. In: High energy electromagnetic interactions and field theory. pp. 171–289 Lévy, M. ed. New York: Gordon and Breach, 1967

    Google Scholar 

  10. Dell'Antonio, G.F., Frishman, Y., Zwanziger, D.: Thirring model in terms of currents: solution and light-cone expansions. Phys. Rev.D6, 988–1007 (1972)

    Google Scholar 

  11. Dell'Antonio, G.F.: A model field theory: the Thirring model. Acta. Phys. Austr. Suppl.43, 43–88 (1975)

    Google Scholar 

  12. Carey, A. L., Ruijsenaars, S. N. M.: On fermion gauge groups, current algebras and Kac-Moody algebras, to appear

  13. Streater, R. F., Wilde, I. F.: Fermion states of a boson field, Nucl. Phys.B24, 561–575 (1970)

    Google Scholar 

  14. Streater, R. F.: Charges and currents in the Thirring model. In: Physical reality and mathematical description. pp. 375–386, Enz, C. P., Mehra, J. eds., Dordrecht: Reidel, 1974

    Google Scholar 

  15. Uhlenbrock, D. A.: Fermions and associated bosons of a one-dimensional model. Comm. Math. Phys.4, 64–76 (1967)

    Google Scholar 

  16. Lundberg, L. -E.: Observable algebra approach to the Thirring-Schwinger model. Copenhagen preprint, 1976

  17. Carey, A. L., Hurst, C. A., O'Brien, D. M.: Automorphisms of the canonical anticommutation relations and index theory. J. Func. Anal.48, 360–393 (1982)

    Google Scholar 

  18. Carey, A. L., Hurst, C. A., O'Brien, D. M.: Fermion currents in 1+1 dimensions. J. Math. Phys.24, 2212–2221 (1983)

    Google Scholar 

  19. Carey, A. L., Hurst, C. A.: A note on infinite dimensional groups and the boson-fermion correspondence. Comm. Math. Phys. (to appear)

  20. Segal, G. B.: Jacobi's identity and an isomorphism between a symmetric algebra and an exterior algebra. Oxford preprint, 1982

  21. Streater, R. F., Wightman, A. S.: PCT, spin and statistics and all that. New York: Benjamin, 1964

    Google Scholar 

  22. Basarab-Horwath, P., Streater, R. F., Wright, J.: Lorentz covariance and kinetic charge. Comm. Math. Phys.68, 195–207 (1979)

    Google Scholar 

  23. Doplicher, S., Haag, R., Roberts, J. E.: Fields, observables and gauge transformations I, II. Comm. Math. Phys.13, 1–23 (1969)15, 173–200 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Additional information

Communicated by K. Osterwalder

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carey, A.L., Ruijsenaars, S.N.M. & Wright, J.D. The massless Thirring model: Positivity of Klaiber'sn-point functions. Commun.Math. Phys. 99, 347–364 (1985).

Download citation

  • Received:

  • Issue Date:

  • DOI: