Communications in Mathematical Physics

, Volume 99, Issue 3, pp 319–345 | Cite as

The Hamiltonian structure of general relativistic perfect fluids

  • David Bao
  • Jerrold Marsden
  • Ronald Walton
Article

Abstract

We show that the evolution equations for a perfect fluid coupled to general relativity in a general lapse and shift, are Hamiltonian relative to a certain Poisson structure. For the fluid variables, a Lie-Poisson structure associated to the dual of a semi-direct product Lie algebra is used, while the bracket for the gravitational variables has the usual canonical symplectic structure. The evolution is governed by a Hamiltonian which is equivalent to that obtained from a canonical analysis. The relationship of our Hamiltonian structure with other approaches in the literature, such as Clebsch potentials, Lagrangian to Eulerian transformations, and its use in clarifying linearization stability, are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abarbanel, H., Holm, D., Marsden, J., Ratiu, T.: [1984]: Nonlinear stability of stratified flow (to appear)Google Scholar
  2. Arms, J.: Linearization stability of the Einstein-Maxwell system, J. Math. Phys.18, 830–833 (1977)Google Scholar
  3. Arms, J.: Linearization stability of gravitational and gauge fields. J. Math. Phys.20, 443–453 (1979)Google Scholar
  4. Arms, J.: [1979*]: Does matter break the link between symmetry and linearization instability?, GRG essay (unpublished)Google Scholar
  5. Arms, J.: The structure of the solution set for the Yang-Mills equations. Math. Proc. Camb. Phil Soc.90, 361–372 (1981)Google Scholar
  6. Arms, J., Marsden, J., Moncrief, V.: Bifurcations of momentum mappings. Commun. Math. Phys.78, 455–478 (1981)Google Scholar
  7. Arms, J., Marsden, J., Moncrief, V.: The structure of the space of solutions of Einstein's equations, II: Several Killing fields and the Einstein Yang-Mills equations, Ann. Phys.144, 81–106 (1982)Google Scholar
  8. Arnold, V.: Sur la géometrie differentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluids parfaits. Ann. Inst. Fourier, Grenoble,16, 319–361 (1966a)Google Scholar
  9. Arnold, V.: [1966b]: Ana priori estimate in the theory of hydrodynamic stability. Am. Math. Soc. Transl.19, 267–269 (1969)Google Scholar
  10. Arnowitt, R., Deser, S., Misner, C. W.: The dynamics of general relativity. In Gravitation: an introduction to current research. pp. 227–65. Witten, L. (ed.) New York: Wiley 1962Google Scholar
  11. Bao, D.: Some aspects in the dynamics of supergravity. Thesis, U.C. Berkeley 1983Google Scholar
  12. Bao, D.: A sufficient condition for the linearization stability ofN=1 supergravity: A preliminary report. Ann. Phys158, 211–278 (1984)Google Scholar
  13. Bao, D., Isenberg, J., Yasskin, P.: [1984]: The dynamics of the Einstein-Dirac system I: A principal bundle formulation of the theory and its canonical analysis. Ann. Phys. (to appear)Google Scholar
  14. Bialynicki-Birula, I., Hubbard, J. C., Turski, L. A.: Gauge-independent canonical formulation of relativistic plasma theory (preprint)Google Scholar
  15. Bretherton, F. P.: A note on Hamilton's principle for perfect fluids. J. Fluid Mech.44, 19–31 (1970)Google Scholar
  16. Calkin, M. G.: An action principle for magnetohydrodynamics, Can. J. Phys.41, 2241–2251 (1963)Google Scholar
  17. Carter, B.: Elastic perturbation theory in general relativity and a variational principle for a rotating solid star. Commun. Math. Phys.30, 261–286 (1973)Google Scholar
  18. D'Eath, P.: Three perturbation problems in general relativity, Thesis, Cambridge. Ann. Phys.98, 237–263 (1974)Google Scholar
  19. Demaret, J., Moncrief, V.: Hamiltonian formalism for perfect fluids in general relativity. Phys. Rev.D21, 2785–2793 (1980)Google Scholar
  20. Dirac, P. A. M.: Fixation of coordinates in the Hamiltonian theory of gravitation. Phys. Rev.114, 924–30 (1959)Google Scholar
  21. Dirac, P. A. M.: Lectures on quantum mechanics. Belfer graduate school of science, Monograph Series No. 2. New York: Yeshiva University 1964Google Scholar
  22. Dzyaloshinskii, I. E., Volovick, G. E.: Poisson brackets in condensed matter physics. Ann. Phys.125, 67–97 (1980)Google Scholar
  23. Fischer, A., Marsden, J.: General relativity as a dynamical system on the manifoldA of riemannian metrics which cover diffeomorphism, In: Methods of local and global differential geometry in general relativity. Lecture Notes in Physics, pp. 176–188 Vol.14, Berlin, Springer, Heidelberg, New York: 1972Google Scholar
  24. Fischer, A., Marsden, J.: Topics in the dynamics of general relativity. In: Isolated gravitating systems in general relativity, Ehlers, J. (ed.),Ital. Phys. Soc. 322–395 (1979)Google Scholar
  25. Fischer, A., Marsden, J., Moncrief, V.: The structure of the space of solutions of Einstein's equations. I. One Killing Field. Ann. Inst. H. Poincaré.33, 147–194 (1980)Google Scholar
  26. Guillemin, V., Sternberg, S.: The moment map and collective motion, Ann Phys.127, 220–253 (1980)Google Scholar
  27. Hanson, A., Regge, T., Teitelboim, C.: Constrained Hamiltonian systems. Accad. Nazionale Lincei, Rome. No. 22, 1–35 (1976)Google Scholar
  28. Hawking, S. W., Ellis, G. F. R.: The large scale structure of spacetime. Cambridge: Cambridge University Press 1973Google Scholar
  29. Hazeltine, R. D., Holm, D. D., Marsden, J. E., Morrison, P. J.: Generalized Poisson brackets and nonlinear Liapunov stability-application to reduced MHD Proc. Plasma Phys. Conf., Lausanne, June 1984Google Scholar
  30. Holm, D. D., Kupershmidt, B. A.: Poisson brackets and Clebsch representations for magnetohydrodynamics, multifluid plasmas, and elasticity. Physica6D, 347–363 (1983)Google Scholar
  31. Holm, D. D., Kupershmidt, B. A.: Relativistic fluid dynamics as a hamiltonian system. Phys. Lett.101A, 23–26 (1984)Google Scholar
  32. Holm, D. D., Marsden, J. E., Ratiu, T., Weinstein, A.: Nonlinear stability conditions anda priori estimates for barotropic hydrodynamics. Phys. Lett.98A, 15–21 (1983)Google Scholar
  33. Holm, D., Marsden, J., Ratiu, T., Weinstein, A.: [1984]: Nonlinear stability of equilibria in fluid and plasma systems. Phys. Rep. (to appear)Google Scholar
  34. Isenberg, J.: The construction from initial data of spacetimes with nontrivial spatial and bundle topology. Ann. Phys.129, 223–248 (1980)Google Scholar
  35. Joshi, N., Saraykar, R.: Linearization stability of Einstein equations coupled with self-gravitating scalar fields. J. Math. Phys.22, 343–347 (1981)Google Scholar
  36. Kunzle, H. P., Nester, J. M.: Hamiltonian formulation of gravitating perfect fluids and the Newtonian limit. J. Math. Phys.25, 1009–1018 (1984)Google Scholar
  37. Lichnerowicz, A.: Relativistic hydrodynamics and magnetohydramics: Lectures on the existence of solutions. New York: W. A. Benjamin 1967Google Scholar
  38. Lund, F., Canonical quantization of relativistic balls of dust. Phys. Rev.D,8, 3253 (1973)Google Scholar
  39. Marsden, J., Ratiu, T., Weinstein, A.: [1984a]: Semidirect products and reduction in mechanics. Trans. Am. Math. Soc.281, 147–177 (1984)Google Scholar
  40. Marsden, J., Ratiu, T., Weinstein, A.: [1984b]: Reduction and Hamiltonian structures on duals of semidirect product Lie algebras. Cont. Math.AMS 28 (1984)Google Scholar
  41. Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys.5, 121–130 (1974)Google Scholar
  42. Marsden, J., Weinstein, A.: The Hamiltonian structure of the Maxwell-Vlasov equations. Physica4D, 394–406 (1982)Google Scholar
  43. Marsden, J. E., Weinstein, A.: Coadjoint orbits, vortices and Clebsch variables for incompressible fluids. Physica7D, 305–323 (1983)Google Scholar
  44. Marsden, J. E., Weinsten, A., Ratiu, T., Schmid, R., Spencer, R. G.: Hamiltonian systems with symmetry, coadjoint orbits and plasma physics, Proc,. IUTAM-ISIMM Symposium on: Modern developments in analytical mechanics. Torino, June 7–11, 1982. Atti Accad. Sci. Torino117, 289–340 (1983)Google Scholar
  45. Misner, C. W., Thorne, K., Wheeler, J. A.: Gravitation, San Francisco: W. H. Freeman 1973Google Scholar
  46. Moncrief, V.: Gravitational perturbations of spherically symmetric systems, II. Perfect fluid interiors. Ann. Phys.88, 343–370 (1974)Google Scholar
  47. Moncrief, V.: Hamiltonian formalism for relativistic perfect fluids. Phys. Rev.D. 16, 1702–1705 (1977)Google Scholar
  48. Morrison, P. J., Greene, J. M.: Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics. Phys. Rev. Lett.45, 790–794 (1980)Google Scholar
  49. Ratiu, T.: Euler-Poisson equations on Lie algebras. Thesis, U.C. Berkeley 1980Google Scholar
  50. Schutz, B. F.: Perfect fluids in general relativity-velocity potentials and a variational principle. Phys. Rev.D2, 2762–2773 (1970)Google Scholar
  51. Schutz, B. F.: The Hamiltonian theory of a relativistic perfect fluid. Phys. Rev.D4, 3559–3566 (1971)Google Scholar
  52. Schutz, B. F., Sorkin, R.: Variational aspects of relativistic field theories, with application to perfect fluids. Ann. Phys.107, 1–43 (1977)Google Scholar
  53. Seliger, R. L., Whitham, G. B.: Variational principles in continuum mechanics. Proc. Roy. Soc.305, 1–25 (1968)Google Scholar
  54. Smarr, L., Taubes, C., Wilson, J. [1980]: General relativistic hydrodynamics. In: The comoving, Eulerian and velocity potential formalisms. Essays on General Relativity, pp. 157–183, Tipler, F. (ed.) New York: Academic PressGoogle Scholar
  55. Spencer, R. G.: The Hamiltonian structure of multi-species fluid electrodynamics. In: Mathematical methods in hydrodynamics and integrability in related dynamical systems. Tabor, M., Treve, Y. M., (eds.), AIP Conf. Proc., La Jolla Institute 1981,88, 121–126 (1982)Google Scholar
  56. Tam, K. K.: A variational principle in relativistic magnetohydrodynamics. Can. J. Phys.44, 2403–2409 (1966)Google Scholar
  57. Tam, K. K., O'Hanlon, J.: Relativistic magnetohydrodynamics of a gravitating fluid. Il Nuovo Cimento62B, 351–359 (1969)Google Scholar
  58. Taub, A. H.: Relativistic Rankine-Hugoniot equations. Phys. Rev.74, 328–334 (1948)Google Scholar
  59. Taub, A. H.: General relativistic variational principle for perfect fluids. Phys. Rev.94, 1468–1470 (1954)Google Scholar
  60. Taub, A. H.: Stability of general relativistic gaseous masses and variational principles. Commun. Math. Phys.15, 235–254 (1969)Google Scholar
  61. Taub, A. H.: Variational principles and relativistic magnetohydrodynamics. Colloq. CNRS,184, 189–200 (1970)Google Scholar
  62. Taub, A. H.: Variational principles in general relativity, Bressanone lectures, pp. 206–300. Rome: Centro Internazionale Matematico Estivo 1970Google Scholar
  63. van Dantzig, D. On the phenomenological thermodynamics of moving matter. Physica6, 673–704 (1939)Google Scholar
  64. Walton, R.: Hamiltonian dynamics of a self-gravitating isentropic perfect fluid, Thesis, Stanford University 1979Google Scholar
  65. Walton, R.: [1980]: A new Hamiltonian formalism for general relativistic perfect fluids (unpublished).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • David Bao
    • 1
    • 2
  • Jerrold Marsden
    • 3
  • Ronald Walton
    • 4
  1. 1.School of MathematicsThe Institute for Advanced StudyPrincetonUSA
  2. 2.Department of MathematicsUniversity of Houston-University ParkHoustonUSA
  3. 3.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  4. 4.Space Systems DivisionLockheed Missiles & Space Company, Inc.SunnyvaleUSA

Personalised recommendations