Skip to main content
Log in

Capacitance of a hollow cylinder

Kapazität eines Hohlzylinders

  • Published:
Electrical Engineering Aims and scope Submit manuscript

Contents

A wide class of electromagnetic problems can be expressed as a system of dual integral equations. These kinds of integral equations occur in boundary value problems wherein there is an integral equation for a certain region and another for the rest of the region. In this paper it is shown that the equation for the charge density on a hollow metallic cylinder can be put into ‘a standard form’ of dual integral equations, which can be transformed into a system of linear equation by means of a Neumann series. A general method to compute the coefficients of the linear system is discussed and the plot of the capacitance as a function of the ratioh/a (half-length/radius of the cylinder) is given. The range of validity of some classical approximate formulas is finally discussed.

Übersicht

Eine große Gruppe elektromagnetischer Aufgabenstellungen kann in Form eines Systems von “dual integral equations” ausgedrückt werden. Diese Art Integralgleichungen kommt bei Aufgaben mit Werten auf der Außenfläche vor, bei denen es eine Integralgleichung für ein bestimmtes Gebiet gibt und eine andere Gleichung für das restliche Gebiet. In der vorliegenden Arbeit wird gezeigt, daß die Gleichung zur Berechnung der auf einen metallischen Hohlzylinder einwirkenden Ladungsdichte auf eine Standardform der Dual-Integral-Gleichungen gebracht werden kann, die über eine Neumannreihe in ein lineares Gleichungssystem überführt wird. Eine allgemeine Methode zur Bestimmung der Koeffizienten des Gleichungssystems wird behandelt und die grafische Darstellung der Kapazität in Funktion des Verhältnissesh/a (halbe Länge/Zylinderradius) gegeben. Zuletzt wird der Geltungsbereich einiger klassischer Näherungsformeln behandelt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grinberg, G. A.;Shukeilo, I. A.: Method of solving a class of axially symmetric problems in the theory of potential and applications to the design of electron-optical lenses. Soviet Physics-Technical Physics 4 (1960) 1189

    Google Scholar 

  2. Sneddon, I. N.: Mixed boundary value problems in potential theory. North-Holland, Amsterdam, 1966

    Google Scholar 

  3. Lebedev, N. N.;Skal'skaya, I. P.: Application of dual integral equations to the electrostatic problem of a hollow conducting cylinder of finite length. Soviet Physics-Technical Physics 18 (1973) 28

    Google Scholar 

  4. Eswaran, K.: On the solution of a class of dual integration equations occurring in diffraction problems. Proc. R. Soc. London A 429 (1980) 399

    Google Scholar 

  5. Bobbio, S.;Gatti, E.: Elettromagnetismo e ottica, Boringhieri, Torino, 1991

    Google Scholar 

  6. Krasnov, M. L.; Kiselev, A. I.; Makarenko, G. I.: Integral equations, Mir, 1983

  7. Gradshteyn, I. S.; Ryzhik, I. M.: Table of integrals, Series, and Products. Academic Press, 1980

  8. Ramm, A. G.: Iterative methods for calculating static fields and wave scattering by small bodies. Springer-Verlag, 1982

  9. Silvester, P. P.; Ferrari, R. L.: Finite elements for electrical engineers. Cambridge University Press, 1988

  10. Meixner, J.: The behavior of electromagnetic fields at edges. IEEE AP-20 (1972) 442

    Google Scholar 

  11. Dôme, G.;Palumbo, L.;Vaccaro, V. G.;Verolino, L.: Longitudinal coupling impedance of a circular iris. Il Nuovo Cimento A 104 (1991) 1241

    Google Scholar 

  12. Dôme, G.;Palumbo, L.;Vaccaro, V. G.;Verolino, L.: A method for computing the longitudinal coupling impedance of circular apertures in a periodic array of infinite planes. Particle Accelerators 36 (1991) 161

    Google Scholar 

  13. Miano, G.; Vaccaro, V. G.; Verolino, L.: A new method of solution of Hallén's problem. Accepted for publication on Journal of Mathematical Physics

  14. Estrada, R.;Kanval, R. P.: Distributional solutions of dual integral equations of Cauchy, Abel and Titchmarsh type. Journal of Integral Equations, 9 (1985) 227

    Google Scholar 

  15. Fok, V. A.;Kapitsa, P. L.;Vainshtein, L. A.: Static boundary problem for a hollow cylinder. Soviet Physics-Technical Physics 4 (1960) 1077

    Google Scholar 

  16. Luke, Y. L.: Integrals of Bessel functions. McGraw-Hill Book Company, 1962

  17. Watson, G. N.: A treatise on the theory of Bessel functions. Cambridge University Press, second edition, 1966

  18. Flannery, B. P.; Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.: Numerical Recipes, Cambridge University Press, 1986

  19. Vainshtein, L. A.: Static boundary problems for a hollow cylinder of finite length-Numerical results. Soviet Physics-Technical Physics 7 (1963) 855

    Google Scholar 

  20. Vainshtein, L. A.: Static boundary problems for a hollow cylinder of finite length-Approximate formulas. Soviet Physics-Technical Physics 7 (1963) 861

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verolino, L. Capacitance of a hollow cylinder. Electrical Engineering 78, 201–207 (1995). https://doi.org/10.1007/BF01240223

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01240223

Keywords

Navigation