Advertisement

Journal of Soviet Mathematics

, Volume 20, Issue 3, pp 2147–2164 | Cite as

Probability distributions of the Kolmogorov and omega-square statistics for continuous distributions with shift and scale parameters

  • K. O. Dzhaparidze
  • M. S. Nikulin
Article

Abstract

The paper is devoted to the application of the statistical Kolmogorov and omega-square criteria to verification of a complex hypothesis H0 according to which the independent, identically and continuously distributed random variables X1,...,Xn have the law G[(x−θ1)/θ2].

Keywords

Probability Distribution Scale Parameter Continuous Distribution Complex Hypothesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    H. Cramer, Mathematical Methods of Statistics, Princeton Univ. Press (1946).Google Scholar
  2. 2.
    D. A. Darling, “The Cramer-Smirnov test in the parametric case,” Ann. Math. Statist.,26, 1–20 (1956).Google Scholar
  3. 3.
    I. I. Gikhman and A. V. Skorokhod (eds.), Theory of Stochastic Processes, Halsted Press (1975).Google Scholar
  4. 4.
    G. V. Martynov, Omega-Square Criteria [in Russian], Nauka, Moscow (1978).Google Scholar
  5. 5.
    J. Durbin, Distribution Theory for Tests Based on the Sample Distribution Function, SIAM, Philadelphia.Google Scholar
  6. 6.
    L. N. Bol'shev and N. V. Smirnov, Tables of Mathematical Statistics [in Russian], Nauka, Moscow (1965).Google Scholar
  7. 7.
    N. V. Smirnov, Probability Theory and Mathematical Statistics [in Russian], Selected Works, Nauka, Moscow (1970), pp. 60–78.Google Scholar
  8. 8.
    I. I. Gikhman, “Some remarks on the consistency criterion of A, N. Kolmogorov,” Dokl. Akad. Nauk SSSR,91, No. 4, 715–718 (1953).Google Scholar
  9. 9.
    D. M. Chibisov, “On asymptotic power and the effectiveness of theω 2 criterion,” Dokl. Akad. Nauk SSSR,18, No. 2, 322–325 (1961).Google Scholar
  10. 10.
    D. M. Chibisov, “Investigation of the power of some nonparametric criteria,” Teor. Veroyatn. Primen.,8, No. 3, 355–356 (1962).Google Scholar
  11. 11.
    G. V. Martynov, “Computation of limit distributions of statistics of criteria for normality of typeω 2,” Teor. Veroyatn. Primen.,21, No. 1, 3–15 (1976).Google Scholar
  12. 12.
    S. R. Rao, Linear Statistical Methods and Their Applications [in Russian], Nauka, Moscow (1968).Google Scholar
  13. 13.
    L. N. Bol'shev, “Detecting rough errors in the result of observations,” International Summer School on Probability Theory and Mathematical Statistics, Varna (1974), pp. 8–41.Google Scholar
  14. 14.
    A. N. Kolmogorov, “Unshifted estimates,” Izv. Akad. Nauk SSSR,14 (1950).Google Scholar
  15. 15.
    N. Rosenblatt, “Remarks on a multivariate transformation,” Ann. Math. Statist.,23 (1952).Google Scholar
  16. 16.
    K. Sarkadi, “On testing for normality,” Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability (1966), pp. 373–387.Google Scholar
  17. 17.
    J. Durbin, “Weak convergence of the sample distribution function when parameters are estimated,” Ann. Math. Statist.,1, 279–290 (1973).Google Scholar
  18. 18.
    L. N. Bol'shev, “On the question of testing 'exponentiality,” Teor. Veroyatn. Primen.,11, No. 3, 542–544 (1966).Google Scholar
  19. 19.
    Yu. V. Prokhorov, “Characterization of a class of distributions by the distribution of some statistic,” Teor. Veroyatn. Primen.,10, No. 3, 479–487 (1965).Google Scholar
  20. 20.
    M. L. Donsker, “Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems,” Ann. Math. Statist.,23, 277–281 (1952).Google Scholar
  21. 21.
    G. V. Martynov, “Computation of limit distributions of statistics of criteria for normality of the typeω 2,” Teor. Veroyatn. Primen.,18, 671–673 (1976).Google Scholar
  22. 22.
    L. N. Bol'shev and N. V. Smirnov, Tables of Mathematical Statistics [in Russian], Izd. VTs Akad. Nauk SSSR, Moscow (1968).Google Scholar
  23. 23.
    L. N. Bol'shev, “On criteria of eliminating sharply distinguished observations,” Tr. Inst. Prikl. Mat., Tomsk. Gos. Univ.,II (1969), pp. 159–177.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • K. O. Dzhaparidze
  • M. S. Nikulin

There are no affiliations available

Personalised recommendations