Inventiones mathematicae

, Volume 103, Issue 1, pp 547–597

Invariants of 3-manifolds via link polynomials and quantum groups

  • N. Reshetikhin
  • V. G. Turaev
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A] Atiyah, M.: On framings of 3-manifolds. (1989) PreprintGoogle Scholar
  2. [A1] Atiyah, M.: Topological quantum field theories. Publ. Math. IHES,68, 175–186 (1989)Google Scholar
  3. [Dr] Drinfeld, V. G.: Quantum groups, Proceedings of the International Congress of Mathematicians. Vol. 1, pp. 798–820. Berkeley: Academic Press 1986Google Scholar
  4. [Dr1] Drinfeld, V. G.: On the almost cocommutative Hopf algebras. Algebra and Analis,1, 30–47 (1989), (in Russian)Google Scholar
  5. [FRT] Faddeev, L., Reshetikhin, N., Takhtajan, L.: Quantization of Lie algebras and Lie groups, Algebra i Analiz i Analiz1, 1 (1989) (in Russian)Google Scholar
  6. [FR] Fenn, R., Rourke, C.: On Kirby's calculus of links. Topology18, 1–15 (1979)Google Scholar
  7. [Ji] Jimbo, M.: Aq-difference analogue ofU(G) and the Yang-Baxter equation. Lett. Math. Phys.10, 63–69 (1985)Google Scholar
  8. [Jo] Jones, V. F. R.: Polynomial invariants of knots via non Neumann algebras. Bull. Am. Math. Soc.12, 103–111 (1985)Google Scholar
  9. [Ka] Kac, V. G.: Infinite dimensional Lie algebras. (Progr. Math. vol. 44). Boston: Birkhäuser 1983; 2nd ed., Cambridge University Press, 1985Google Scholar
  10. [KaW] Kac, V. G., Wakimoto, M.: Modular and conformal invariance constraints in representation theory of affine algebras. Adv. Math.40, 1, 156–236 (1988)Google Scholar
  11. [K] Kirby, R.: The calculus of framed links inS 3. Invent. Math.45, 35–56 (1978)Google Scholar
  12. [KiR] Kirillov, A.N., Reshetikhin, N.Yu: Representations of the algebraU q(sl 2),q-orthogonal polynomials and invariants of links. Leningrad: LOMI preprint E-9-88 1988Google Scholar
  13. [KR] Kulish, P.P., Reshetikhin, N.Yu.: Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova101, 101–110 (in Russian) (1981)Google Scholar
  14. [Ki] Kirillov, A.N.: Quantum Clebsh-Gordan coefficients. Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova168, 67–84 (1988)Google Scholar
  15. [Lu] Luztig, G.: Quantum deformations of certain simple modules over enveloping algebra 1987 (Preprint)Google Scholar
  16. [L] Lickorish, W.B.R.: A representation of orientable combinatorial 3-manifolds, Ann. Math.76, 531–540 (1962)Google Scholar
  17. [MR] Moore, G., Reshetikhin, N.: A comment on Quantum Group Symmetry in Conformal Field Theory. IAS preprint LASSNS-HEP-89/18Google Scholar
  18. [MS] Moore, G., Seigerg, N.: Classical and quantum conformal field theories. IAS preprint IASSNS-HEP-88/39.Google Scholar
  19. [R] Rolfsen, D.: Knots and links. Boston Publish or Perish Press 1976Google Scholar
  20. [Re] Reshetikhin, N.Yu.: Quantized universal enveloping algebras, the Yang-Baxter equation and invariants of links. I., LOMI Preprint E-4-87, 1988; II. LOMI preprint E-17-87, 1988Google Scholar
  21. [Re1] Reshetikhin, N.Yu.: Quasitriangular Hopf algebras and invariants of links. {jtAlgebra and Analysis}, v. {vn1}, {snN2}, {dy1989}Google Scholar
  22. [ReT] Reshetikhin, N.Yu., Turaev, V.G.: Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys.,127, 1–26 (1990)Google Scholar
  23. [RT] Reshetikhin, N.Yu., Turaev, V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. M.S.R.I. (Preprint April 1989)Google Scholar
  24. [Tu] Turaev, V.G.: The Yang-Baxter equation and invariants of links. Invent. Math.92, 527–553 (1988)Google Scholar
  25. [Tu1] Turaev, V.G.: Operator invariants of tangles andR-matrices, Izv. AN SSSR,53, 1073–1107 (in Russian) (1989)Google Scholar
  26. [V] Verlinde, E.: Fusion rules and modular transformations in 2D conformal field theory. Nucl. Physics B300, 360–380 (1988)Google Scholar
  27. [W] Wallace, A.H.: Modifications and cobounding manifolds. Can. J. Math.12, 503–528 (1960)Google Scholar
  28. [Wi] Witten, E.: Quantum field theory and Jones polynomial. Commun. Math. Phys.121 351–399 (1989)Google Scholar
  29. [Wi1] Witten, E.: Gauge Theories and Integrable Lattice Models. IAS IASSNS-HEP-89/11 (Preprint)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • N. Reshetikhin
    • 1
  • V. G. Turaev
    • 2
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA
  2. 2.LOMILeningradUSSR

Personalised recommendations