Advertisement

Rock mechanics

, Volume 15, Issue 1, pp 9–24 | Cite as

Spreading of rock avalanche debris by mechanical fluidization

  • Timothy R. H. Davies
Article

Summary

Spreading of Rock Avalanche Debris by Mechanical Fluidization

Two hypotheses for the motion of large rock avalanches (sturzstroms) are examined: (a) that sturzstrom deposits result from the spreading of a mass of debris in a fluidised state under the influence of gravity, and (b) that the debris becomes fluidised because of the existence of a high shear rate in the basal region. The first hypothesis is supported by data describing the length of sturzstrom deposits, and the second is shown to be in agreement with simple laboratory tests, with the grain-flow theory of Bagnold and with the characteristic features of sturzstrom deposits.

Keywords

Laboratory Test Civil Engineer Shear Rate Characteristic Feature High Shear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagnold, R. A.: Experiments on the Gravity-Free Dispersion of Large Solid Spheres in a Newtonian Fluid Under Shear. Proc. Royal Soc. London225 A 49–63 (1954).Google Scholar
  2. Bagnold, R. A.: The Shearing and Dilatation of Dry Sand. Proc. Royal Soc. London295 A 219–232 (1966 a).Google Scholar
  3. Bagnold, R. A.: An Approach to the Sediment Transport Problem from General Physics. U. S. Geol. Survey Prof. Paper 422-I (1966 b).Google Scholar
  4. Bailard, J. A., Inman, D. L.: A Re-examination of Bagnold's Granular-Fluid Model and Bed Load Transport Equation. J. Geophys. Res.84 7827–7833 (1980).Google Scholar
  5. Bjerrum, L., Kringstad, S., Kummeneje, O.: The Shear Strength of a Fine Sand. Proc. 5th Int. Conf. Soil Mech. and Found. Eng.1 29–37 (1961).Google Scholar
  6. Eisbacher, G. H.: Cliff Collapse and Rock Avalanches (sturzstroms) in the MacKenzie Mountains, Northwestern Canada. Can. Geotech. J.16 309–334 (1979).Google Scholar
  7. Goguel, J.: Scale-Dependent Rockslide Mechanisms. In: Rockslides and Avalanches, 1 (Voight, B., ed.) Dev. Geotech. Eng.14 A 693–705. Amsterdam, Oxford, New York: Elsevier 1978.Google Scholar
  8. Guest, J. E.: Geology of the Farside Crater Tsiolkovsky. In: Geology and Physics of the Moon, (Fielder, G., ed.) 93–103. Amsterdam, Oxford, New York: Elsevier 1971.Google Scholar
  9. Hadley, J. B.: Madison Canyon Rockslide, Montana, U. S. A. In: Rockslides and Avalanches, 1 (Voight, B., ed.) Dev. Geotech. Eng.14 A 167–180. Amsterdam, Oxford, New York: Elsevier 1978.Google Scholar
  10. Heim, A.: Der Bergsturz von Elm. Deutsch. Geol. Gesell. Zeitschr.34 74–115 (1882).Google Scholar
  11. Heim, A.: Bergsturz und Menschenleben. Zürich: Fretz und Wasmuth 1932.Google Scholar
  12. Howard, K.: Avalanche Mode of Motion: Implications from Lunar Examples. Science180 1052–1055 (1973).Google Scholar
  13. Hsü, K. J.: Catastrophic Debris Streams Generated by Rockfalls. Geol. Soc. Amer. Bull.86 129–140 (1975).Google Scholar
  14. Hsü, K. J.: Albert Heim: Observations on Landslides and Relevance to Modern Interpretations. In: Rockslides and Avalanches, 1 (Voight, B., ed.) Dev. Geotech. Eng.14 A 71–93. Amsterdam, Oxford, New York: Elsevier 1978.Google Scholar
  15. Johnson, B.: Blackhawk Landslide, California, U. S. A. In: Rockslides and Avalanches. 1 (Voight, B., ed.) Dev. Geotech. Eng.14 A 481–504. Amsterdam, Oxford, New York: Elsevier 1978.Google Scholar
  16. Kent, P. E.: The Transport Mechanism in Catastrophic Rock Falls. J. Geol.74 79–83 (1965).Google Scholar
  17. Lucchitta, B. K.: A Large Landslide on Mars. Geol. Soc. Amer. Bull.89 1601–1609 (1978).Google Scholar
  18. McSaveney, M. J.: Sherman Glacier Rock Avalanche. In: Rockslides and Avalanches, 1 (Voight, B., ed.) Dev. Geotech. Eng.14 A 197–258. Amsterdam, Oxford, New York: Elsevier 1978.Google Scholar
  19. Melosh, H. J.: Acoustic Fluidization: A New Geologic Process? J. Geophys. Res.84 7513–7520 (1980).Google Scholar
  20. Müller, L.: The Rock Slide in the Vaiont Valley. Rock Mech. and Engin. Geol.2 148–211 (1964).Google Scholar
  21. Scheidegger, A. E.: On the Prediction of the Reach and Velocity of Catastrophic Landslides. Rock Mech.5 231–236 (1973).Google Scholar
  22. Shreve, R. L.: The Sherman Landslide, Alaska. Science154 1639–1643 (1966).Google Scholar
  23. Shreve, R. L.: The Blackhawk Landslide. Geol. Soc. Amer. Spec. Paper108 47 (1968).Google Scholar
  24. Voight, B., Pariseau, W. G.: Rockslides and Avalanches: An Introduction. In: Rockslides and Avalanches, 1 (Voight, B., ed.). Dev. Geotech. Eng.14 A 1–67. Amsterdam, Oxford, New York: Elsevier 1978.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Timothy R. H. Davies
    • 1
  1. 1.Dept. Agr. Eng.University of Canterbury, Lincoln CollegeCanterburyNew Zealand

Personalised recommendations