Belavin, A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two dimensional quantum field theory. Nucl. Phys. B241, 33 (1984)
Google Scholar
Knizhnik, V.G., Zamolodchikov, A.B.: Current algebra and Wess-Zumino model in two dimensions. Nucl. Phys. B247, 83 (1984)
Google Scholar
Zamolodchikov, A.B.: Infinite additional symmetries in two-dimensional conformal quantum field theory. Theor. Math. Phys.65, 1205 (1986)
Google Scholar
Zamolodchikov, A.B., Fateev, V.A.: Parafermionic currents in the two-dimensional conformal quantum field theory and self dual critical points inZ(n) invariant statistical systems. Sov. Phys. JETP62, 215 (1985)
Google Scholar
Friedan, D., Shenker, S.: The analytic geometry of two-dimensional conformal field theory. Nucl. Phys. B281, 509 (1987)
Google Scholar
Friedan, D.: A new formulation of string theory. Physica Scripta T15, 72 (1987)
Google Scholar
Friedan, D, Shenker, S.: Talks at Cargese and I.A.S. (unpublished) (1987)
Kastor, D., Martinec, E., Qiu, Z.: Current algebra and conformal discrete series. Phys. Lett.200 B, 434 (1988)
Google Scholar
Bagger, J., Nemeschansky, D., Yankielowicz, S.: Virasoro algebras with central chargec>1. Phys. Rev. Lett.60, 389 (1988)
Google Scholar
Douglas, M.R.:G/H conformal field theory. CALT-68-1453
Ravanini, F.: An infinite class of new conformal field theories with extended algebras. Nordita-87/56-P
Harvey, J.A., Moore, G., Vafa, C.: Quasicrystalline compactification. Nucl. Phys. B304, 269 (1988)
Google Scholar
Anderson, G., Moore, G.: Rationality in conformal field theory. Commun. Math. Phys.117, 441 (1988)
Google Scholar
Verlinde, E.: Fusion rules and modular transformations in 2-D conformal field theory. Nucl. Phys. B300, 360 (1988)
Google Scholar
Vafa, C.: Toward classification of conformal theories. Phys. Lett.206 B, 421 (1988)
Google Scholar
Moore, G., Seiberg, N.: Polynomial equations for rational conformal field theories. Phys. Lett. (in press)
Bais, F.A., Bouwknegt, P., Surridge, M., Schoutens, K.: Extensions of the Virasoro algebra constructed from Kac-Moody algebra using higher order casimir invariants. Nucl. Phys. B304, 348 (1988); Coset constructions for extended Virasoro algebras. Nucl. Phys. B304, 371 (1988)
Google Scholar
Mathur, S.D., Mukhi, S., Sen, A.: Differential equations for correlators in arbitrary rational conformal field theories. TIFR/TH/88-32; On the classification of rational conformal field theories. TIFR/TH/88-39
Bakas, I.: Higher spin fields and the Gelfand-Dicke Algebra, the Hamiltonian structure of the spin 4 operator algebra. University of Texas at Austin preprints
Lukyanov, S.L., Fateev, V.A.: Additional symmetries in two dimensional conformal field theory and exactly solvable models, Parts I, II, III. (In Russian) Institute for Theoretical Physics (Kiev) preprint ITP-88-74P
Brustein, R., Yankielowicz, S., Zuber, J.-B.: Factorization and selection rules of operator product algebras in conformal field theory. TAUP-1647-88
Dijkgraaf, R., Verlinde, E.: Modular invariance and the fusion algebra. Presented at Annecy Conf. on conformal field theory
Moore, G., Seiberg, N.: Naturality in conformal field theory. Nucl. Phys. (in press)
Blok, B., Yankielowicz, S.: Extended algebras and the coset construction of conformal field theories. TAU-1661-88
Witten, E.: Quantum field theory and the Jones polynomials. To appear in the proc. of the IAMP Congress, Swansea, July, 1988
Segal, G.: Talks at IAS 1987
Ishibashi, N., Matsuo, Y., Ooguri, H.: Soliton equations and free fermions on Riemann surfaces. UT-499-Tokyo
Alvarez-Gaumé, L., Gomez, C., Reina, C.: Loop groups, Grassmannians and string theory. Phys. Lett.190 B, 55 (1987)
Google Scholar
Vafa, C.: Operator formulation on Riemann surfaces. Phys. Lett.190 B, 47 (1987)
Google Scholar
Also see, Alvarez-Gaumé, L., Gomez, C., Moore, G., Vafa, C.: Strings in the operator formalism. Nucl. Phys. B303, 455 (1988)
Google Scholar
Alvarez-Gaumé, L., Gomez, C., Nelson, P., Sierra, G., Vafa, C.: Fermionic strings in the operator formalism. BUHEP-88-11, and refs. therein
In the mathematical literature these have been discussed In: Borcherds, R.: Proc. Nat. Acad. Sci. USA,83, 3068 (1986)
Google Scholar
Lepowsky, J.: Perspectives on the Monster. Lepowsky, J., Frenkel, I., Meurman, A.: Vertex operators and the Monster. Academic Press, New York to appear; Borcherds, R.: Berkeley preprints
Goddard, P., Kent, A., Olive, D.: Unitary representations of the Virasoro and super Virasoro algebras. Commun. Math. Phys.103, 105 (1986)
Google Scholar
Dixon, L., Harvey, J.A., Vafa, C., Witten, E.: Strings on orbifolds. Nulc. Phys. B261, 678 (1985); Strings on orbifolds. II. Nucl. Phys. B274, 285 (1986)
Google Scholar
Goddard, P., Schwimmer, A.: Unitary constructions of extended conformal algebras. Phys. Lett.206 B, 62 (1988)
Google Scholar
Schroer, B.: Quasiprimary fields: An approach to positivity of 2-D conformal quantum field theory. Nucl. Phys. B295, 4 (1988); Algebraic aspects of non-perturbative quantum field theories. Como lectures; Rehren, K.-H.: Locality of conformal fields in two-dimensions: Exchange algebras on the light cone. Commun. Math. Phys.116, 675 (1988); Fröhlich, J.: Statistics of fields, the Yang-Baxter equation, and the theory of knots and links. Lectures at Cargese 1987, to appear In: Nonperturbative quantum field theory, Plenum Press: New York. Felder, G., Fröhlich, J.: Unpublished lectures notes
Google Scholar
Rehren, K.-H., Schroer, B.: Einstein causality and artin braids. FU preprint 88-0439
Tsuchiya, A., Kanie, Y.: Vertex operators in the conformal field theory onP1 and monodromy representations of the braid group. In: Conformal field theory and solvable lattice models. Adv. Stud. Pure Math.16, 297 (1988); Vertex operators in the conformal field theory onP1 and monodromy representations of the braid group. Lett. Math. Phys.13, 303 (1987)
Google Scholar
Vafa, C.: Conformal theories and punctured surfaces. Phys. Lett.199 B, 195 (1987)
Google Scholar
Frenkel, I.: Talk at Canadian Society of Math. Vancouver, Nov. 1987 H. Sonoda. Nucl. Phys. B311, 417 (1988)
Google Scholar
DiFrancesco, P.: Structure constants for rational conformal field theories. Saclay preprint, PhT-88/139
Witten, E.: Non-Abelian bosonization. Commun. Math. Phys.92, 455 (1984)
Google Scholar
Rose, M.E.: Elementary theory of angular momentum. New York: Wiley 1957
Google Scholar
Pressley, N., Segal, G.: Loop groups. Oxford: Oxford Univ. Press 1986
Google Scholar
Felder, G., Gawedzki, K., Kupiainen, A.: The spectrum of Wess-Zumino-Witten models. IHES/p/87/35
Kirillov, A.A.: Elements of the theory of representations. Berlin, Heidelberg, New York: Springer 1976
Google Scholar
Saavedra, N.: Catégories tannakiennes. Lecture Notes in Mathematics, Vol. 265. Berlin, Heidelberg, New York: Springer 1972
Google Scholar
Deligne, P., Milne, J.S.: Tannakian categories. In: Hodge cycles, motives and Shimura varieties. Lecture Notes in Mathematics, Vol. 900. Berlin, Heidelberg, New York: Springer 1982
Google Scholar
Deligne, P.: Catégories tannakiennes,. IAS preprint
MacLane, S.: Categories for the Working Mathematician. GTM 5
Jones, V.F.R.: Invent. Math.72, 1 (1983)
Google Scholar
Pasquier, V.: Operator content of the ADE lattice models. J. Phys. A20, 5707 (1987); Continuum limit of lattice models built on quantum groups. Nucl. Phys. B295 491 (1988); Etiology of IRF models. Saclay-SPhT/88/20
Google Scholar
Kirillov, A.N., Reshetikhin, N.Y.: Representations of the algebraU
q
(sl(2)).q-orthogonal polynomials and invariants of links. LOMI preprint E-9-88
See, for example, Drinfeld, V.: Quantum Groups. In: Proc. at the Intl. Cong. of Math. 1986, p. 798, and references therein
Reshetikhin, N.Y.: Quantized Universal Enveloping Algebras. The Yang-Baxter Equation and Invariants of Links. LOMI preprint E-4-87, E-17-87
Beilinson, A.A., Schechtman, V.V.: Determinant bundles and Virasoro algebras. Commun. Math. Phys.118, 651–701 (1988)
Google Scholar
LeClair, A., Peskin, M., Preitschopf, C.: String field theory on the conformal plane. SLAC-PUB-4306; SLAC-PUB-4307
MacLane, S.: Natural associativity and commutativity. Rice University Studies, Vol. 49, 4, 28 (1963)
Google Scholar
Harer, J.: The second homology group of the mapping class group of an orientable surface. Invent. Math.72, 221 (1983)
Google Scholar
Birman, J.: Braids, links, and mapping class groups. Ann. Math. Studies, Vol. 82. Princeton, NJ: Princeton University Press 1974
Google Scholar
Birman, J.: On braid groups. Commun. Pure App. Math.22, 41 (1969); Mapping class groups and their relationship to braid groups. Commun. Pure App. Math.22, 213 (1969)
Google Scholar
Wajnryb, B.: A simple presentation for the mapping class group of an orientable surface. Israel J. Math.45, 157 (1983); See also the review: Birman, J.: Mapping class group of surfaces. In: Proc. of “Braids” conference, Contemporary Math. (to appear)
Google Scholar
DiFrancesco, P., Saleur, H., Zuber, J.-B.: Critical Ising correlations in the plane and on the torus. Nucl. Phys. B290, 527 (1987)
Google Scholar
Eilenberg, S., MacLane, S.: Cohomology theory in abstract groups. I. Ann. Math.48, 51 (1947)
Google Scholar
Brown, K.: Cohomology of groups. Berlin, Heidelberg, New York: Springer 1982
Google Scholar
Jackiw, R.: Three cocycles in mathematics and physics. Phys. Rev. Lett.54, 159 (1985)
Google Scholar
Grossman, B.: A three cocycle in quantum mechanics. Phys. Lett.152 B, 93 (1985)
Google Scholar
See, e.g., Loo-Keng, Hua: Introduction to Number Theory, p. 162. Berlin, Heidelberg, New York: Springer 1982
Google Scholar