World Journal of Microbiology and Biotechnology

, Volume 8, Issue 6, pp 559–563 | Cite as

Vesicular-arbuscular mycorrhizae in relation to plant disease

  • A. K. Sharma
  • B. N. Johri
  • S. Gianinazzi


Vesicular-arbuscular mycorrhizae (VAM) enhance plant growth through increased nutrient uptake, stress tolerance and disease resistance. As an integral part of the root system, they interact with other microorganisms in soil and result in increased root exudation approaching about 25% of the plant dry matter production. Roots support a multitude of microorganisms that, in concert, can have profound influence on growth and survival of the plant. VAM fungi can alter the root exudation pattern, enhance chitinolytic activity and alter photosynthetic/respiratory deficiencies. VAM-positive plants are known to exhibit varied resistance towards soil-borne and foliar pathogens. The known interactions include a number of mechanisms, such as exclusion of the pathogen, lignification of plant cell walls, changed phosphate nutrition resulting in altered exudation by roots, and formation of inhibitory low molecular weight compounds. The purpose of this review is to discuss VAM-plant-pathogen interactions and the possible mechanisms involved in altered resistance. Based on these observations, a working model is proposed to explain the VAM-disease interaction under varied environmental conditions.

Key words

Fungi pathogens root exudation soil-borne disease suppression vesicular arbuscular mycorrhizae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayers, A.R., Wycoff, K.L. & Hanfstingl, U. 1986 Monoclonal antibodies specific for pathogen carbohydrate antigen candidates for avirulence determinants.Journal of Cell Biochemistry 10C, 20.Google Scholar
  2. Bagyaraj, D.J. 1984 Biological interactions with VA mycorrhizal fungi. In:VA Mycorrhiza, eds Powell, C.L. & Bagyaraj, D.J., pp. 131–153. Boca Raton, FL: CRC Press.Google Scholar
  3. Baltruschat, H. & Schoenbeck, F. 1975 The influence of endotrophic mycorrhiza on the infestation of tobacco byThielaviopsis basicola.Phytopathologische Zeitschrift 84, 172–188.Google Scholar
  4. Banowetz, G.M., Trione, E.J. & Kryjgierr, B.B. 1984 Immunological comparisons of teliospores of two wheat bunt fungi using monoclonal antibodies and antisera.Mycologia 76, 51–62.Google Scholar
  5. Bisht, V.S., Krishna, K.R. & Nene, Y.L. 1985 Interaction between vesicular-arbuscular mycorrhiza andPhytophthora drechsleri f. sp.cajani.International Pigeonpea Newsletter 4, 63–64.Google Scholar
  6. Cameron, G.C. 1986 Interactions between two vesicular-arbuscular mycorrhizal fungi, the soybean cyst nematode and phosphorus fertility on two soybean cultivars. M.Sc. Thesis University of Georgia, Athens, GA.Google Scholar
  7. Carnon, M., Richard, C. & Fortin, J.A. 1986 Effect of preinfestation of the soil by a vesicular-arbuscular mycorrhizal fungusGlomus intraradices onFusarium crown and root rot of tomatoes.Phytoprotection 67, 15–19.Google Scholar
  8. Cook, R.J. & Baker, K.F. 1982The Nature and Practice of Biological Control of Plant Pathogens. St Paul, MN: American Phytopathological Society.Google Scholar
  9. Cooper, K. & Grandison, G.S. 1986 Interaction of vesicular-arbuscular mycorrhizal fungi and root knot nematode on cultivars of tomato and white clover susceptible toMeloidogyne hapla.Annals of Applied Biology 108, 555–565.Google Scholar
  10. Cramer, C.L., Ryder, T.B., Bell, J.N., & Lamb, C.J. 1985 Rapid switching of plant gene expression induced by fungal elicitor.Science 227, 1240–1243.Google Scholar
  11. Dehne, H.W. 1982 Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens.Phytopathology 72, 1114–1119.Google Scholar
  12. Dehne, H.W. and Schoenbeck, F. 1978 Investigation on the influence of endotrophic mycorrhiza on plant diseases. 3. Chitinase activity and ornithine cycle.Zeitschrift für Pflanzenkrankheiten und Pflanzenschuty 85, 666–678.Google Scholar
  13. Elliott, A.P., Bird, G.W. & Safir, G.R. 1984 Joint influence ofPratylenchus penetrans (Nematoda) andGlomus fasciculatum (Phycomyceta) on the ontogeny ofPhaseolus vulgaris.Nematropica 14, 111–119.Google Scholar
  14. Fassuliotis, G. 1970 Resistance inCucumis sp. to the root knot nematodeMeloidogyne incognita acrita.Journal of Nematology 2, 174–178.Google Scholar
  15. Gianinazzi, S. 1984 Genetic and molecular aspects of resistance induced by infections or chemicals. InPlant Microbe Interactions, Molecular and Genetic Perspectives, Vol. 1, eds. Nester, T. & Kosuge, E.W. pp. 321–342. New York: Macmillan.Google Scholar
  16. Gianinazzi-Pearson, V. & Gianinazzi, S. 1989 Cellular and genetical aspects of interactions between hosts and fungal symbionts in mycorrhizae.Genome 31, 336–341.Google Scholar
  17. Gianinazzi-Pearson, V., Gianinazzi, S., Dexheimer, J., Morandi, D., Trauvelot, A. & Dumas, E. 1988 Recherche sur les mecanismes intervenant dans les interactions symbiotigues plante—chamignons endomycorrhizogenes VA.Cryptogamie-Mycologie 9, 201–209.Google Scholar
  18. Giovannetti, M., Tosi, D., Dellatorre, G. & Zazzserini, A. 1991 Histological, physiological and biochemical interactions between vesicular-arbuscular mycorrhizae andThielaviopsis basicola in tobacco plants.Journal of Phytopathology 131, 265–274.Google Scholar
  19. Good, J.M. 1968 Relation of plant parasitic nematodes to soil management practices. In:Tropical Nematology, eds Smart, G.C. & Perry, V.G. pp. 113–138. Gainsville, FL: University of Florida.Google Scholar
  20. Graham, J.H. & Menge, J.A. 1982 Influence of vesicular-arbuscular mycorrhizae and soil phosphorus on take-all disease of wheat.Phytopathology 72, 95–98.Google Scholar
  21. Grandison, G.S. & Cooper, K.M. 1986 Interaction of vesicular-arbuscular mycorrhizae and cultivarsMeloidogyne hapla.Journal of Nematology 18, 141–149.Google Scholar
  22. Hedge, S.V. & Rai, P.V. 1984 Influence ofGlomus fasciculatum on damping-off of tomato.Current Science (India) 53, 588–589.Google Scholar
  23. Hussey, R.S. & Roncadori, R.W. 1982 Vesicular-arbuscular mycorrhizae may limit nematode activity and improve plant growth.Plant Disease 66, 9–14.Google Scholar
  24. Kellam, M.K. & Schenck, N.C. 1980 Interation between a vesicular-arbuscular mycorrhizal fungus and root knot nematode on soybean.Phytopathology 70, 293–296.Google Scholar
  25. Krishna, K.R. & Bagyaraj, D.J. 1983 Interaction betweenGlomus fasciculatus andSclerotium rolfsii in peanut.Canadian Journal of Botany 41, 2349–2351.Google Scholar
  26. Krishna, K.R. & Bagyaraj, D.J. 1986 Phenolics of mycorrhizal and uninfected groundnut var. MGS-7.Current Research 15, 51–52.Google Scholar
  27. Meyer, J.R. & Linderman, R.G. 1986 Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed byGlomus fasciculatum.Soil Biology & Biochemistry 18, 191–196.Google Scholar
  28. Morandi, D., Bailey, J.A. & Gianinazzi-Pearson, V. 1984 Isoflavonoid accumulation in soybean roots infected with vesicular-arbuscular mycorrhizal fungi.Physiological Plant Pathology 24, 356–364.Google Scholar
  29. Parvatha Reddy, P. 1974 Studies on the action of amino acids on the root knot nematodeMeloidogyne incognita. Ph.D. Thesis, University of Agricultural Sciences. Bangalore, India.Google Scholar
  30. Rosendahl, S. 1985 Interactions between the vesicular-arbuscular mycorrhizal fungusGlomus fasciculatum andAphanomyces eutieches root rot of peas.Phytopathologische Zeitschrift 114, 31–41.Google Scholar
  31. Saleh, H. & Sikora, R.A. 1984 Relationship betweenGlomus fasciculatum root colonization of cotton and its effect ofMeloidogyne incognita.Nematologica 30, 230–237.Google Scholar
  32. Schoenbeck, F. 1979 Endomycorrhiza in relation to plant diseases. InSoil Borne Plant Pathogens, eds Schippers, B. & Gams, W. pp. 271–280 New York: Academic Press.Google Scholar
  33. Secilia, J. & Bagyaraj, D.N. 1987 Bacteria and actinomycetes associated with pot cultures of vesicular-arbuscular mycorrhizas.Canadian Journal of Microbiology 33, 1069–1073.Google Scholar
  34. Sitaramaiah, K. & Sikora, R.A. 1982 Effect of mycorrhizal fungusGlomus fasciculatus on the host-parasite relationship ofRotylenchus reniformis in tomato.Nematologica 28, 412–419.Google Scholar
  35. Smith, G.S. & Kaplan, D.T. 1988 Influence of mycorrhizal fungus, phosphorus and burrowing nematode interactions on growth of rough lemon citrus seedlings.Journal of Nematology 20, 539–544.Google Scholar
  36. Smith, G.S., Roncadori, R.W. & Hussey, R.S. 1986 Interaction of endomycorrhizal fungi, superphosphate andMeloidogyne incognita on cotton in microplot and field studies.Journal of Nematology 18, 208–216.Google Scholar
  37. Smith, S.E. & Gianinazzi-Pearson, V. 1988 Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants.Annual Review of Plant Physiology and Molecular Biology 39, 221–244.Google Scholar
  38. Wallace, H.R. 1973Nematode Ecology and Plant Disease. London and Oxford: Alden Press.Google Scholar
  39. Wyss, P., Mellor, R.B. & Wiemken, A. 1990 Vesicular-arbuscular mycorrhizas of wild type soybean and non-nodulating mutant withGlomus mosseae contain symbiosis-specific polypeptides (mycorrhizins), immunologically cross reactive with nodulins.Planta 182, 22–26.Google Scholar
  40. Zambolim, L. & Schenck, N.C. 1983 Reduction of the effects of pathogenic root rot infecting fungi on soybean by the mycorrhizal fungusGlomus mosseae.Phytopathology 73, 1402–1405.Google Scholar

Copyright information

© Rapid Communications of Oxford Ltd 1992

Authors and Affiliations

  • A. K. Sharma
    • 1
  • B. N. Johri
    • 1
  • S. Gianinazzi
    • 2
  1. 1.the Department of Microbiology, CBSHG.B. Pant University of Agriculture and TechnologyPantnagarIndia
  2. 2.the Laboratoire de Phytoparasitologie, Station de Génétique et Amélioration des PlantesINRADijonFrance

Personalised recommendations