Abstract
We determine the covolumes of all hyperbolic Coxeter simplex reflection groups. These groups exist up to dimension 9. the volume computations involve several different methods according to the parity of dimension, subgroup relations and arithmeticity properties.
This is a preview of subscription content, access via your institution.
References
L. Bianchi,Sui gruppi di sostituzioni lineari con coefficienti appartenenti a corpi quadratici immaginari, Math. Ann.40 (1892), 332–412.
A. Borel,Commensurability classes and volumes of hyperbolic 3-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci.8 (1981), 1–33.
]N. Bourbaki,Éléments de máthématique. Fasc. XXXIV. Chapitres IV, V et VI: Groupes de Coxeter et systèmes de Tits. Groupes engendrés par des reflexions. Systèmes derracines, Hermann, Paris, 1968. Russian translation: Н. Бурбаки,Брунны и алчебры Ли. Брунны Коксмера и сисмемы Тимса. Брунны, норожденные омражениями. Сисмеми коней, М., Мир, 1972.
M. Chein,Recherche des graphes des matrices de Coxeter hyperboliques d'ordre ≤10, Rev. Française Informat. Rech. Opération3 (1969), 3–16.
H. S. M. Coxeter,Discrete groups generated by reflections, Ann. Math.35 (1934), 588–621.
H. S. M. Coxeter,The functions of Schläfli and Lobatschevsky, Quart. J. Math. (Oxford)6 (1935), 13–29.
H. S. M. Coxeter, G. J. Whitrow,World-structure and non-Euclidean honeycombs, Proc. Royal Soc. LondonA201 (1950), 417–437.
H.E. Debrunner,Dissecting orthoschemes into orthoschemes, Geom. Dedicata33 (1990), 123–152.
З.Б. Винберг (ред.),Геомемрия-2, Итоги науки и техн. Цоврем. пробл. матем. Фунд. направл., т. 29, ВИНИТИ, Моцква, 1988. English translation: E. B. Vinberg (ed.),Geometry, II, Encyclopaedia of Math. Sciences, vol. 29, Springer-Verlag, Berlin-Heidelberg-New York, 1993.
N. W. Johnson, A. I. Weiss,Quadratic integers and Coxeter groups, Canad. J. Math.51 (1999), to appear.
R. Kellerhals,On the volume of hyperbolic polyhedra, Math. Ann.285 (1989), 541–569.
R. Kellerhals,On Schläfli's reduction formula, Math. Z.206 (1991), 193–210.
R. Kellerhals,On volumes of hyperbolic 5-orthoschemes and the trilogarithm, Comment. Math. Helv.67 (1992), 648–663.
R. Kellerhals,On volumes of non-Euclidean polytopes, in Polytopes: Abstract, Convex and Computational (T. Bisztriczky et al., ed.); vol. 440, Kluwer, Dordrecht, 1994, pp. 231–239.
R. Kellerhals,Volumes in hyperbolic 5-space, Geom. Funct. Anal.5 (1995), 640–667.
J.-L. Koszul,Lectures on Hyperbolic Coxeter Groups, Notes by T. Ochiai, Univ. of Notre Dame, Notre Dame, IN. (1968).
F. Lannér,On complexes with transitive groups of automorphisms, Medd. Lunds Univ. Mat. Sem.11 (1950), 1–71.
L. Lewin,Polylogarithms and Associated Functions, North Holland, 1981.
Н. И. Лобачевский,Примененение еооб⌕ажаемой γеомемрии к иекоморым инмеγралам, Лолн. собр. собр. соч., М.-Л., том3, 1949, 18–294. German translation: N. I. Lobatschefskij,Imaginäre Geometrie und ihre Anwendung auf einige Integrale, Deutsche Übersetzung von H. Liebmann. Teubner, Leipzig, 1904.
C. Maclachlan, A. W. Reid,The arithmetic structure of tetrahedral groups of hyperbolic isometries, Mathematika36 (1989), 221–240.
R. Meyerhoff,A lower bound for the volume of hyperbolic 3-orbifolds, Duke Math. J.57, (1988), 185–203.
J. G. Ratcliffe,Foundations of Hyperbolic Manifolds, Graduate Texts in Math., vol. 149, Springer-Verlag, New York-Berlin-Heidelberg, 1994.
J. G. Ratcliffe, S. T. Tschantz,Volumes of integral congruence hyperbolic manifolds, J. Reine Angew. Math.488 (1997), 55–78.
C. H. Sah,Scissors congruences, I,the Gauss-Bonnet map, Math. Scand.49 (1981), 181–210.
L. Schläfli,Die Theorie der vielfachen Kontinuität, in Gesammelte Mathematische Abhandlungen, vol. 1, Birkhäuser, 1950.
C. L. Siegel,Über die analytische Theorie der quadratischen Formen, Ann. Math.36 (1935), 527–606.
C. L. Siegel,Über die analytische Theorie der quadratischen Formen, II, Ann. Math.37 (1936), 230–263.
Э. Б. Винберг,Дискремиые Sруииы, иоржденные омражениями е иросмрансмеах Лобачевскоγо, Мат. Сборник72 (1967), 471–488. English translation: E. B. Vinberg,Discrete groups generated by reflections in Lobacevskii spaces, Math. USSR-Sbornik1 (1967), 429-444.
E. Witt,Spiegelungsgruppen und Aufzählung halbeinfacher Liescher Ringe, Abh. Math. Sem. Univ. Hamburg14 (1941), 289–322.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Johnson, N.W., Kellerhals, R., Ratcliffe, J.G. et al. The size of a hyperbolic Coxeter simplex. Transformation Groups 4, 329–353 (1999). https://doi.org/10.1007/BF01238563
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF01238563