Skip to main content
Log in

Topography of opsin within disk and plasma membranes revealed by a rapid-freeze deep-etch technique

  • Published:
Journal of Neurocytology

Summary

Rod outer segments in fresh rat retinas were examined by a rapid-freeze, deep-etch technique to explore how membrane proteins are organized at the macromolecular level. Cross-fractures revealed that intradiscal membranes are adherent to each other except at the rim. When an isolated fresh retina was incubated in a hypotonic solution for a few minutes, the interdiscal space was expanded and the cytoplasmic surface of the disk membrane was found to be covered with protrusions except at the rim. A few particles were scattered among the protrusions and were attached to the cytoplasmic surface. Since the distribution density of the cytoplasmic surface protrusions was similar to that of the P-face particles, which are known to reflect opsins, the protrusions were considered to be portions of opsins extending into the cytoplasm. The intradiscal surfaces in chemically-fixed retinas were rather smooth and were labelled with anti-opsin antibodies and wheat germ agglutinin. The true surfaces of the plasma membrane were found to be similar in fine structure to those of the disk.

A model of the macromolecular organization of rod outer segments is proposed on the basis of these observations. The model shows apposed opsins within a disk membrane adhering to one another except at the rim. These opsins, as well as those in the plasma membrane, are minimally exposed to the extracellular surface, but protrude deeply into the cytoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, L. D. &Cohen, A. I. (1979) Freeze-fracture evidence for the presence of cholesterol in particle-free patches of basal disks and the plasma membrane of retinal rod outer segments of mice and frogs.Journal of Cell Biology 81, 215–28.

    Google Scholar 

  • Barber, J. (1982) Influence of surface charges on thylakoid structure and function.Annual Review of Plant Physiology 33, 261–95.

    Google Scholar 

  • Barclay, P. L. &Findlay, J. B. C. (1984) Labelling of the cytoplasmic domains of bovine rhodopsin with hydrophilic chemical probes.Biochemical Journal 220, 75–84.

    Google Scholar 

  • Basinger, S., Bok, D. &Hall, M. (1976) Rhodopsin in the rod outer segment plasma membrane.Journal of Cell Biology 69, 29–42.

    Google Scholar 

  • Chabre, M., Cavaggioni, A., Osborne, H. B., Gulikkrzywicki, T. &Olive, J. (1972) A rhodopsin-lipid-water lamellar system: its characterization by X-ray diffraction and electron microscopy.FEBS Letters 26, 197–202.

    Google Scholar 

  • Chen, Y. S. &Hubbell, W. L. (1973) Temperature- and light-dependent structural changes in rhodopsin-lipid membrane.Experimental Eye Research 17, 517–32.

    Google Scholar 

  • Clark, S. P. &Molday, R. S. (1979) Orientation of membrane glycoproteins in sealed rod outer segment disks.Biochemistry 18, 5868–73.

    Google Scholar 

  • Cohen, A. I. (1971) Electron microscope observations on form changes in photoreceptor outer segments and their saccules in response to osmotic stress.Journal of Cell Biology 48, 547–65.

    Google Scholar 

  • Corless, J. M. (1972) Lamellar structure of bleached and unbleached rod photoreceptor membranes.Nature 237, 229–31.

    Google Scholar 

  • Corless, J. M., Cobbs, W. H., Costello, M. J. &Robertson, J. D. (1976) On the asymmetry of frog retinal outer segment disk membranes.Experimental Eye Research 23, 295–324.

    Google Scholar 

  • Dixon, R. A. F., Kobilka, B. K., Strader, D. J., Benovic, J. L., Dohlman, H. G., Frielle, T., Bolanowski, M. A., Bennett, C. D., Rands, E., Diehl, R. E., Mumford, R. A., Slater, E. E., Sigal, I. S., Caron, M. G., Lefkowitz, R. J. &Strader, C. D. (1986) Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin.Nature 321, 75–9.

    Google Scholar 

  • Falk, G. &Fatt, P. (1969) Distinctive properties of the lamellar and disk-edge structures of the rod outer segment.Journal of Ultrastructure Research 28, 41–60.

    Google Scholar 

  • Findlay, J. B., Brett, M. &Pappin, D. J. (1981) Primary structure of C-terminal functional sites in bovine rhodopsin.Nature 293, 314–16.

    Google Scholar 

  • Fiesler, S. J., Rayborn, M. E. &Hollyfield, J. G. (1985) Membrane morphogenesis in retinal rod outer segments: inhibition by tunicamycin.Journal of Cell Biology 100, 574–87.

    Google Scholar 

  • Fung, G. K.-K. &Hubbell, W. L. (1972) Preparation and properties of phospholipid bilayers containing rhodopsin.Proceedings of the National Academy of Sciences (USA) 69, 2617–21.

    Google Scholar 

  • Fung, B. K.-K. &Hubbell, W. L. (1978) Organization of rhodopsin in photoreceptor membrane. 2. Transmembrane organization of bovine rhodopsin: evidence from proteolysis and lactoperoxidase-catalyzed iodination of native and reconstituted membranes.Biochemistry 17, 4403–10.

    Google Scholar 

  • Gotow, T., Miyaguchi, K., &Hashimoto, P. H. (1991) Cytoplasmic architecture of the axon terminal: filamentous strands specially associated with synaptic vesicles.Neuroscience 40, 587–98.

    Google Scholar 

  • Hargrave, P. A. (1982) Rhodopsin chemistry, structure and topography.Progress in Retinal Research 1, 1–51.

    Google Scholar 

  • Hargrave, P. A., McDowell, J. H., Curtis, D. R., Wang, J. K., Juszczak, E., Fong, S. L., Rao, J. K. M. &Argos, P. (1983) The structure of bovine rhodopsin.Biophysics of Structure and Mechanism 9, 235–44.

    Google Scholar 

  • Heller, J. (1968) Structure of visual pigments. I. Purification, molecular weight and composition of bovine visual pigment.Biochemistry 7, 2906–13.

    Google Scholar 

  • Heller, J. &Lawrence, M. A. (1970) Structure of the glycopeptide from bovine visual pigment.Biochemistry 9, 864–9.

    Google Scholar 

  • Heller, J., Ostwald, T. J. &Bok, D. (1971) The osmotic behavior of rod photoreceptor outer segment discs.Journal of Cell Biology 48, 633–49.

    Google Scholar 

  • Hinshaw, J. E. &Miller, K. R. (1989) Localization of light-harvesting complex II to the occluded surfaces of photosynthetic membranes.Journal of Cell Biology 109, 1725–31.

    Google Scholar 

  • Jan, L. Y. &Revel, J. P. (1974) Ultrastructural localization of rhodopsin in vertebrate retina.Journal of Cell Biology 62, 257–73.

    Google Scholar 

  • Kuo, C.-H., Tamotsu, S., Morita, Y., Shinozawa, T., Akiyama, M. &Miki, N. (1988) Presence of retinalspecific proteins in the lamprey pineal complex.Brain Research 442, 147–51.

    Google Scholar 

  • Keller, G. A., Tokuyasu, K. T., Dutton, A. H. &Singer, S. J. (1984) An improved procedure for immunoelectron microscopy: ultrathin plastic embedding of immunolabeled ultrathin frozen sections.Proceedings of the National Academy of Sciences (USA) 81, 5744–7.

    Google Scholar 

  • Krebs, W. &Kühn, H. (1977) Structure of isolated bovine rod outer segment membranes.Experimental Eye Research 25, 511–26.

    Google Scholar 

  • Kühn, H. (1980) Light- and GTP-regulated interaction of GTPase and other proteins with bovine photoreceptor membranes.Nature 283, 587–9.

    Google Scholar 

  • Leeson, T. S. (1970) Rat retinal rods: freeze-fracture replication of outer segments.Canadian Journal of Opthalmology 5, 91–107.

    Google Scholar 

  • Mackenzie, D. &Molday, R. S. (1982) Organization of rhodopsin and a high molecular weight glycoprotein in rod photoreceptor disc membranes using monoclonal antibodies.Journal of Biological Chemistry 257, 7100–5.

    Google Scholar 

  • Mackenzie, D., Arendt, A., Hargrave, P. A., McDowell, J. H. &Molday, R. S. (1984) Localization of binding sites for carboxyl terminal specific anti-rhodopsin monoclonal antibodies using synthetic peptides.Biochemistry 23, 6544–9.

    Google Scholar 

  • Mas, M. T., Wang, J. K. &Hargrave, P. A. (1980) Topography of rhodopsin in rod outer segment disk membranes. Photochemical labelling with N-(4-azino-2-nitrophenyl)-2-aminoethanesulfolate.Biochemistry 19, 314–16.

    Google Scholar 

  • McDonnel, A. &Staehelin, L. A. (1980) Adhesion between liposomes mediated by the cholorophyll a/b light-harvesting complex isolated from chloroplast membranes.Journal of Cell Biology 84, 40–56.

    Google Scholar 

  • Miki, N., Baraban, J. M., Keirns, J. J., Boyce, J. J. &Bitensky, M. W. (1975) Purification and properties of the light-activated cyclic nucleotide phosphodiesterase of rod outer segments.Journal of Biological Chemistry 250, 6320–7.

    Google Scholar 

  • Miyaguchi, K. &Hashimoto, P. H. (1992) Evidence for the transport of opsin in the connecting cilium and basal rod outer segment in rat retina; rapid-freeze, deep-etch and horseradish peroxidase labelling studies.Journal of Neurocytology 21, 449–57.

    Google Scholar 

  • Molday, R. S. &Mackenzie, D. (1983) Monoclonal antibodies to rhodopsin: characterization, cross-reactivity, and application as structural probes.Biochemistry 22, 653–60.

    Google Scholar 

  • Molday, R. S., &Mackenzie, D. (1985) Inhibition of monoclonal antibody binding and proteolysis by light-induced phosphorylation of rhodopsin.Biochemistry 24, 776–81.

    Google Scholar 

  • Molday, R. S. &Molday, L. L. (1979) Identification and characterization of multiple forms of rhodopsin and minor proteins in frog and bovine rod outer segment disk membranes. Electrophoresis, lectin labelling and proteolysis studies.Journal of Biological Chemistry 254, 4653–60.

    Google Scholar 

  • Molday, R. S. &Molday, L. L. (1987) Differences in the protein composition of bovine retinal rod outer segment disk and plasma membranes isolated by a ricin-gold dextran density perturbation method.Journal of Cell Biology 105, 2589–601.

    Google Scholar 

  • Molday, R. S., Hicks, D. &Molday, L. L. (1987) Peripherin: a rim-specific membrane protein of rod outer segment disks.Investigative Opthalmology & Visual Science 28, 50–61.

    Google Scholar 

  • Moody, M. F. &Roberston, J. D. (1960) The fine structure of some retinal photoreceptors.Journal of Biophysical and Biochemical Cytology 7, 87–91.

    Google Scholar 

  • Nir, I. &Hall, M. O. (1979) Ultrastructural localization of lectin binding sites on the surface of retinal photoreceptors and pigment epithelium.Experimental Eye Research 29, 181–94.

    Google Scholar 

  • Papermaster, D. S., Schneider, B. G., Zorn, M. A. &Kraehenbuhl, J. P. (1978) Immunocytochemical localization of a large intrinsic membrane protein to the incisures and margins of frog rod outer segment disks.Journal of Cell Biology 78, 415–25.

    Google Scholar 

  • Polans, A. S., Altman, L. G. &Papermaster, D. S. (1986) Immunocytochemical binding of anti-opsin N-terminalspecific antibodies to the extracellular surface of rod outer segment plasma membranes. Fixation induces antibody binding.Journal of Histochemistry & Cytochemistry 34, 659–64.

    Google Scholar 

  • Röhlich, P. (1976) Photoreceptor membrane carbohydrate on the intradiscal surface of retinal rod discs.Nature 263, 789–91.

    Google Scholar 

  • Roof, D. J. &Heuser, J. E. (1982) Surfaces of rod photoreceptor disk membranes: integral membrane components.Journal of Cell Biology 95, 487–500.

    Google Scholar 

  • Roof, D. J. &Korenbrot, J. I., Heuser, J. E. (1982) Surfaces of rod photoreceptor disk membranes: light-activated enzymes.Journal of Cell Biology 95, 501–9.

    Google Scholar 

  • Rosen, S. D., Kafka, J. A., Simpson, D. L. &Barondes, S. H. (1973) Developmentally regulated, carbohydratebinding proteins inDictyostelium discoideum.Proceedings of the National Academy of Sciences (USA) 70, 2554–7.

    Google Scholar 

  • Smith, D. P., Kilbourn, M. R., McDowell, J. H. &Hargrave, P. A. (1981) Topography of rhodopsin in retinal outer segment disk membranes. Photochemical labelling with 1-azidopyrene.Biochemistry 20, 2417–24.

    Google Scholar 

  • Townes-Anderson, E., Dacheux, R. F. &Raviola, E. (1988) Rod photoreceptors dissociated from the adult rabbit retina.Journal of Neuroscience 8, 320–31.

    Google Scholar 

  • Travis, G. H., Sutcliffe, J. G. &Bok, D. (1991) The retinal degeneration slow (rds) gene product is a photoreceptor disc membrane-associated glycoprotein.Neuron 6, 61–70.

    Google Scholar 

  • Usukura, J. &Yamada, E. (1981) Molecular organization of the rod outer segment. A deep-etching study with rapid freezing using unfixed frog retina.Biomedical Research 2, 177–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyaguchi, K., Kuo, C.H., Miki, N. et al. Topography of opsin within disk and plasma membranes revealed by a rapid-freeze deep-etch technique. J Neurocytol 21, 807–819 (1992). https://doi.org/10.1007/BF01237906

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01237906

Keywords

Navigation