Skip to main content
Log in

The evolution of phage lysis timing

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

The effect of host quantity and host quality on the evolution of phage lysis timing is analysed using marginal value theorem of optimal foraging theory. Both factors have been shown to strongly influence the latent period. A high host density selects for short latent period, which is the same result as previous investigators have found. A good host quality also promotes a short latent period. However, elasticity analysis shows that these two factors exert their influences under different sets of conditions. When host density is low, the host density is more important in determining the length of latent period, whereas when host density is high, the host quality is more important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abedon, S. T. (1989) Selection for bacteriophage latent period length by bacterial density: a theoretical examination.Microbiol. Ecol. 18 79–88.

    Google Scholar 

  • Ackermann, H. -W. and DuBow, M. S. (1987)Viruses of Prokaryotes, Vol. I. CRC Press, Inc., Boca Raton, FL.

    Google Scholar 

  • Adams, M. H. (1959)Bacteriophages. Interscience Publishers, Inc., New York, NY.

    Google Scholar 

  • Benzer, S. (1953) Induced synthesis of enzymes in bacteria analyzed at the cellular level.Biochim. Biophys. Acta. 11 383–95.

    Google Scholar 

  • Charnov, E. L. (1976) Optimal foraging, the marginal value theorem.Theor. Pop. Biol. 9 129–36.

    Google Scholar 

  • Charnov, E. L. and Skinner, S. W. (1984) Evolution of host selection and clutch size in parasitoid wasps.Florida Entomol. 67 5–21.

    Google Scholar 

  • Charnov, E. L. and Parker, G. A. (1995) Dimensionless invariants from foraging theory's marginal value theorem.Proc. Natl Acad. Sci. USA 92 1446–50.

    Google Scholar 

  • Delbrück, M. (1940) Adsorption and bacteriophage under various physiological conditions of the host.J. Gen. Physiol. 23 631–42.

    Google Scholar 

  • Ellis, E. L. and Delbrück, M. (1939) The growth of bacteriophage.J. Gen. Physiol. 23, 365–84.

    Google Scholar 

  • Hershey, A. D. (1953) Nucleic acid economy in bacteria infected with bacteriophage T2. II. Phage precursor nucleic acid.J. Gen. Physiol. 37 1–23.

    Google Scholar 

  • Hutchison, C. A. and Sinsheimer, R. L. (1966) The process of infection with bacteriophage øX174. X. Mutations in a øX174 lysis gene.J. Mol. Biol. 18 429–47.

    Google Scholar 

  • Ingraham, J. L., Maaløe, O. and Neidhardt, F. C. (1983)Growth of the Bacterial Cell. Sinauer Associates, Inc., Sunderland, MA.

    Google Scholar 

  • Josslin, R. (1970) The lysis mechanism of phage T4: mutants affecting lysis.Virology 40 719–26.

    Google Scholar 

  • Levin, B. R. and Lenski, R. E. (1983) Coevolution in bacteria and their viruses and plasmids. InCoevolution (D.J. Futuyma and M. Slatkin, eds), pp. 99–127. Sinauer Associates, Inc., Sunderland, MA.

    Google Scholar 

  • Levin, B. R. and Lenski, R. E. (1985) Bacteria and phage: a model system for the study of the ecology and co-evolution of hosts and parasites. InEcology and Genetics of Host—Parasite Interactions (D. Rollinson and R. M. Anderson, eds), pp. 227–242. Academic Press, London.

    Google Scholar 

  • Levin, B. R., Stewart, F. M. and Chao, L. (1977) Resource-limited growth, competition, and predation: a model and experimental studies with bacteria and bacteriophage.Am. Nat. 111 3–24.

    Google Scholar 

  • Parker, G. A. and Stuart, R. A. (1976) Animal behavior as a strategy optimizer: evolution of resource assessment strategies and optimal emigration thresholds.Am. Nat. 110 1055–76.

    Google Scholar 

  • Skinner, S. W. (1985) Clutch size as an optimal foraging problem for insects.Behav. Ecol. Sociobiol. 17 231–8.

    Google Scholar 

  • Stearns, S. C. (1992)The Evolution of Life Histories. Oxford University Press, Oxford.

    Google Scholar 

  • Stephens, D. W. and Krebs, J. R. (1986)Foraging Theory. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Stewart, F. M. and Levin, B. R. (1984) The population biology of bacterial viruses: why be temperate.Theor. Pop. Biol. 26 93–117.

    Google Scholar 

  • Young, R. (1992) Bacteriophage lysis: mechanism and regulation.Microbiol. Rev. 56 430–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, IN., Dykhuizen, D.E. & Slobodkin, L.B. The evolution of phage lysis timing. Evol Ecol 10, 545–558 (1996). https://doi.org/10.1007/BF01237884

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01237884

Keywords

Navigation