Evolutionary Ecology

, Volume 9, Issue 2, pp 131–138 | Cite as

Maintenance of two genetic entities by habitat selection

  • Thierry de Meeûs
  • Michael E. Hochberg
  • François Renaud


In the laboratory, the two species of copepodsLepeophtheirus thompsoni andLepeophtheirus europaensis, ectoparasites of flatfishes, can meet and mate on at least one host species. In the wild however, these two species are found isolated on their sympatric hosts. Habitat selection theoretically represents a powerful enough mechanism to explain the maintenance of genetic heterogeneity in the wide sense. In this paper, the host colonization process is studied for both parasite species. It is shown that each parasite can develop and reach adult age on each host species. However,L. thompsoni is highly selective; it almost totally refuses to colonize hosts other than its natural one.Lepeophtheirus europaensis, on the contrary, readily infests turbot and brill in single-host experiments, but strongly prefers the brill when it has a choice. It appears that these two genetic entities are sympatrically maintained due to strong habitat selection. Such a pattern could theoretically only occur in a soft-selection context (density dependence). This point is discussed with respect to the different patterns in host use found in the geographical distribution of these parasites.


Selected polymorphism habitat selection genetic isolation habitat specialization soft selection competition parasitic copepods specificity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boxshall, G.A. (1974) Infections with parasitic copepods in North Sea marine fishes.J. Mar. Biol. Ass. UK 54, 355–72.Google Scholar
  2. De Meeûs, T., Renaud, F. and Gabrion, C. (1990) A model for studying isolation mechanisms in parasite populations: the genusLepeophtheirus (Copepoda, Caligidae).J. Exp. Zool. 254, 207–14.Google Scholar
  3. De Meeûs, T., Michalakis, Y., Renaud, F. and Olivieri I. (1993) Polymorphism in heterogeneous environments, evolution of habitat selection and sympatric speciation. Soft and hard selection models.Evol. Ecol. 7, 175–98.Google Scholar
  4. Dempster, E.R. (1955) Maintenance of genetic heterogeneity.Cold Spring Harbor Symp. Quant. Biol. Sci. 20, 25–32.Google Scholar
  5. Doyle, R.W. (1975) Settlement of planktonic larvae: a theory of habitat selection in varying environments.Am. Nat. 109, 113–26.Google Scholar
  6. Futuyma, D.J. and Moreno, G. (1988) The evolution of ecological specialisation.Ann. Rev. Ecol. Syst. 19, 207–33.Google Scholar
  7. Garcia-Dorado, A. (1986) The effect of niche preference on polymorphism protection in a heterogeneous environment.Evolution 40, 936–45.Google Scholar
  8. Hedrick, P.W. (1990) Genotypic habitat selection: a new model and its application.Heredity 65, 145–9.Google Scholar
  9. Johannessen, A. (1978) Early stages ofLepeophtheirus salmonis (Copepoda, Caligidae).Sarsia 63, 169–76.Google Scholar
  10. Jones, J.S. and Probert, R.F. (1980) Habitat selection maintains a deleterious allele in a heterogeneous environment.Nature 287, 632–3.Google Scholar
  11. Kabata, Z. (1972) Developmental stages ofCaligus clemensi (Copepoda; Caligidae).J. Fish Res. Bd Canada 29, 1571–93.Google Scholar
  12. Levene, H. (1953) Genetic equilibrium when more than one ecological niche is available.Am. Nat. 87, 331–3.Google Scholar
  13. Lewis, A.G. (1963) Life history of the caligid copepodLepeophtheirus dissimulatus Wilson, 1905 (Crustacea, Caligoida).Pacific Sci. 17, 195–242.Google Scholar
  14. Maynard Smith, J. (1962) Disruptive selection, polymorphism and sympatric speciation.Nature 195, 60–2.Google Scholar
  15. Maynard Smith, J. (1966) Sympatric speciation.Am. Nat. 100, 637–49.Google Scholar
  16. Maynard Smith, J. and Hoekstra, R.F. (1980) Polymorphism in a varied environment: how robust are the models?Genet. Res. Camb. 35, 45–57.Google Scholar
  17. Norman, J.R. (1934)A Systematic Monograph of flatfishes (Heterosomata) Vol. 1:Psettodidae, Bothidae, Pleuronectidae. British Museum (ed.), London, UK.Google Scholar
  18. Quignard, J.P. (1972). La Méditerranée, creuset ichthyologique.Bull. Zool. 45, 23–36.Google Scholar
  19. Rausher, M.D. (1984) The evolution of habitat preference in subdivided populations.Evolution 38, 596–608.Google Scholar
  20. Rice, W.R. (1987) Speciation via habitat specialisation: the evolution of reproductive isolation as a correlated character.Evol. Ecol. 1, 301–14.Google Scholar
  21. Rice, W.R. (1989) Analyzing tables of statistical tests.Evolution 43, 223–5.Google Scholar
  22. Rosenzweig, M.L. (1991) Habitat selection and population interactions: the search for mechanisms.Am. Nat. 137, S5-S28.Google Scholar
  23. Scherrer, B. (1984)Biostatistique. Gaêtan Morin. Chicoutimi, Canada.Google Scholar
  24. Sokal, R.R. and Rohlf, F.J. (1981)Biometry. Freeman and Co, New York.Google Scholar
  25. Zeddam, J.L., Berrebi, P., Renaud, F., Raibaut, A. and Gabrion, C. (1988) Characterisation of two species ofLepeophtheirus (Copepoda, Caligidae) from flatfishes. Description ofLepeophtheirus europaensis sp. Nov.Parasitology 96, 129–44.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Thierry de Meeûs
    • 1
  • Michael E. Hochberg
    • 2
  • François Renaud
    • 1
  1. 1.Laboratoire de Parasitologie Comparée, CNRS-URA 698Université Montpellier II, Case 105Montpellier Cedex 05France
  2. 2.Ecole Normale Supérieure, CNRS-URA 258Laboratoire d'EcologieParis Cedex 05France

Personalised recommendations