Evolutionary Ecology

, Volume 10, Issue 4, pp 341–359 | Cite as

Competition and habitat selection in Namib desert tenebrionid beetles

  • David Ward
  • Mary K. Seely


We tested whether intra- and interspecific competition could affect habitat selection in the two most abundant tenebrionid beetles,Physadesmia globosa andOnymacris rugatipennis, in a dry riverbed in the Namib desert. The spatial distributions of these beetles at the microhabitat scale were negatively correlated. We performed a removal experiment, progressively removing first 25% and then a further 25% of the population of the most abundant species,P. globosa, under the trees where most of the preferred food of both species is concentrated. There was no response ofO. rugatipennis to this removal in the tree habitat. In the open, barely-vegetated habitat where mostO. rugatipennis are found, the number of this species caught in pitfall traps increased following both removals and decreased followingP. globosa replacement under the trees. It appears that intraspecific competition forces someP. globosa to occupy the open habitat. Interspecific competition betweenP. globosa andO. rugatipennis in the open habitat reduces the number ofO. rugatipennis that can co-exist withP. globosa there. Removal ofP. globosa under the trees allows conspecifics in the open habitat to move under the trees, releasingO. rugatipennis in the open habitat from competition. This then results in an increase in the numbers ofO. rugatipennis in the open habitat as a result of immigration from neighbouring areas. We found that differences in foraging efficiency, measured as giving-up times in artificial food patches, create a likely mechanism of co-existence that explains the distinct preferences of these two species for tree and open habitats.


competition community structure insects beetles detritivores Namib desert foraging habitat selection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldryhim, Y. N., Mills, C. W. and Aldawood, A. S. (1992) Ecological distribution and seasonality of darkling beetles (Coleoptera: Tenebrionidae) in the central region of Saudi Arabia.J. Arid Environ. 23, 415–22.Google Scholar
  2. Bender, E. A., Case, T. J. and Gilpin, M. E. (1984) Perturbation experiments in community ecology: theory and practice.Ecology 65, 1–13.Google Scholar
  3. Benson, W. W. (1978) Resource partitioning in passion vine butterflies.Evolution 32, 493–518.Google Scholar
  4. Brown, J. S. (1988) Patch use as an indicator of habitat preference, predation risk, and competition.Behav. Ecol. Sociobiol. 22, 37–47.Google Scholar
  5. Brown, J. S. (1989a) The role of resource variability in structuring desert rodent communities. InPatterns in the structure of mammalian communities (D. W. Morris, Z. Abramsky, B. J. Fox and M. R. Willig, eds) pp. 141–54. University of Texas Press, Lubbock.Google Scholar
  6. Brown, J. S. (1989b) Desert rodent community structure: a test of four mechanisms of coexistence.Ecol. Monogr. 59, 1–20.Google Scholar
  7. Brown, J. S. and Rosenzweig, M. L. (1986) Habitat selection in slowly regenerating environments.J. Theor. Biol. 123, 151–71.Google Scholar
  8. Brunsting, A. M. H. and Heessen, H. J. L. (1984) Density regulation in the carabid beetlePterostichus oblongopunctatus F. (Col., Carabidae).J. Animal Ecol. 53, 751–60.Google Scholar
  9. Crawford, C. S. (1988) Nutrition and habitat selection in desert detritivores.J. Arid Environ. 14, 111–21.Google Scholar
  10. Crawford, C. S. (1991) The community ecology of macroarthropod detritivores. InThe ecology of desert communities (G. A. Polis, ed.) pp. 89–112. University of Arizona Press, Tucson.Google Scholar
  11. Crawford, C. S. and Seely, M. K. (1987) Assemblages of surface-active arthropods in the Namib dunefield and associated habitats.Rev. Zool. Afr. 101, 397–421.Google Scholar
  12. Crawford, C. S., Hanrahan, S. A. and Seely, M. K. (1990) Scale-related habitat use byPhysadesmia globosa (Coleoptera: Tenebrionidae) in a riparian desert environment. InNamib ecology: 25 years of Namib research (M. K. Seely, ed.) pp. 135–42. Transvaal Museum Press, Pretoria.Google Scholar
  13. Crawley, M. J. (1993)GLIM for Ecologists. Blackwells, Oxford.Google Scholar
  14. Den Boer, P. J. (1985) Exclusion, competition or coexistence? A question of testing the right hypotheses.Z. Zool. Syst. Evol. 23, 259–74.Google Scholar
  15. Doyen, J. T. and Tschinkel, W. F. (1974) Population size, microgeographic distribution and habitat separation in some tenebrionid beetles (Coleoptera).Ann. Entomol. Soc. Am. 67, 617–26.Google Scholar
  16. Edwards, A. W. F. (1992)Likelihood. Johns Hopkins Press, Baltimore, MD.Google Scholar
  17. Ferguson, J. W. H. (1989) Summer activity patterns of the riparian desert beetlePhysadesmia globosa.Madoqua 16, 9–13.Google Scholar
  18. Gaines, S. D. and Denny, M. (1994) The largest, smallest, highest, lowest, longest and shortest: extremes in ecology.Ecology 74, 1677–92.Google Scholar
  19. Gaines, S. D. and Rice, W. R. (1990) Analysis of biological data when there are ordered expectations.Am. Nat. 135, 310–17.Google Scholar
  20. Grubb, T. C. and Greenwald, L. (1982) Sparrows and a brushpile: foraging responses to different combinations of predation risk and energy cost.Animal Behav. 30, 637–40.Google Scholar
  21. Hanrahan, S. A. and Seely, M. K. (1990) Food and habitat use by three tenebrionid beetles (Coleoptera) in a riparian desert environment. InNamib ecology: 25 years of Namib research (M. K. Seely, ed.) pp. 143–7. Transvaal Museum Monograph No. 7, Transvaal Museum, Pretoria.Google Scholar
  22. Hanski, I. and Cambefort, Y. (1991) Competition in dung beetles. InDung beetle ecology (I. Hanski and Y. Cambefort, eds) pp. 305–29. Princeton University Press, Princeton, NJ.Google Scholar
  23. Hauffe, H. (1988) Speciation inOnymacris rugatipennis, an adesmiine tenebrionid from the central Namib desert — a multiple approach. Unpublished BSc Honours thesis, Oxford University, Oxford.Google Scholar
  24. Holm, E. and Edney, E. B. (1973) Daily activity of Namib desert arthropods in relation to climate.Ecology 54, 45–56.Google Scholar
  25. Hubbard, S. F. and Cook, R. M. (1978) Optimal foraging by parasitoid wasps.J. Animal Ecol. 47, 593–604.Google Scholar
  26. Hughes, J. J., Ward, D. and Perrin, M. R. (1994) Predation risk and competition affect habitat selection and activity of Namib desert gerbils.Ecology 75, 1397–405.Google Scholar
  27. Janzen, D. H. (1973) Host plants as islands. II. Competition in evolutionary and contemporary time.Am. Nat. 107, 786–90.Google Scholar
  28. Juliano, S. A. (1986) A test for competition for food among adultBrachinus species (Coleoptera: Carabidae).Ecology 67, 1655–64.Google Scholar
  29. Juliano, S. A. and Lawton, J. H. (1990) The relationship between competition and morphology. I. Morphological patterns among co-occurring dytiscid beetles.J. Animal Ecol. 59, 403–20.Google Scholar
  30. Krebs, C. J. (1989)Ecological Methodology. Harper and Row, New York, NY.Google Scholar
  31. Krebs, J. R., Ryan, J. C. and Charnov, E. L. (1974) Hunting by expectation or optimal foraging? A study of patch use by chickadees.Animal Behav. 22, 953–64Google Scholar
  32. Lawton, J. H. and Hassell, M. P. (1981) Asymmetrical competition in insects.Nature 289, 793–5.Google Scholar
  33. Lawton, J. H. and Strong, D. R. (1981) Community patterns and competition in folivorous insects.Am. Nat. 118, 317–38.Google Scholar
  34. Lenski, R. E. (1982) Effects of forest cutting on twoCarabus species: evidence for competition for food.Ecology 63, 1211–17.Google Scholar
  35. Lenski, R. E. (1984) Food limitation and competition: a field experiment with twoCarabus species.J. Animal Ecol. 53, 203–16.Google Scholar
  36. Lima, S. L. (1985) Maximizing feeding efficiency and minimizing time exposed to predators: a trade-off in the black-capped chickadee.Oecologia 66, 60–7.Google Scholar
  37. Loreau, M. (1989) On testing temporal niche differentiation in carabid beetles.Oecologia 81, 89–96.Google Scholar
  38. Loreau, M. (1990) Competition in a carabid community: a field experiment.Oikos 58, 25–38.Google Scholar
  39. MacArthur, R. H. and Pianka, E. R. (1966) On optimal use of a patchy environment.Am. Nat. 100, 603–9.Google Scholar
  40. McClure, M. S. and Price, P. W. (1975) Competition among sympatricErythroneura leafhoppers (Homoptera: Cicadellidae) in American sycamore.Ecology 56, 1388–97.Google Scholar
  41. Mitchell, W. A., Abramsky, Z., Kotler, B. P., Pinshow, B. and Brown, J. S. (1990) The effect of competition on foraging activity in desert rodents: theory and experiments.Ecology 71, 844–54.Google Scholar
  42. Muller, J. K. (1985) Konkurrenzvermeidung und Einnischung bei Carabidae (Coleoptera).Z. Zool. Syst. Evol. 23, 299–314.Google Scholar
  43. Pianka, E. R. (1970) Onr- andK-selection.Am. Nat. 104, 592–7.Google Scholar
  44. Pianka, E. R. (1973) The structure of lizard communities.Ann. Rev. Ecol. Syst. 4, 1–28.Google Scholar
  45. Roberts, C. S., Seely, M. K., Ward, D., Mitchell, D. and Campbell, J. D. (1991) Body temperatures of Namib desert tenebrionid beetles: their relationship in laboratory and field.Physiol. Entomol. 16, 463–75.Google Scholar
  46. Roer, H. (1977) Aktionsraum und Anpassung des NamibwustenkafersOnymacris r. rugatipennis (Haag, 1875) (Col.: Tenebrionidae, Adesmiini) an das Trockenflussbett des Kuiseb in Sudwestafrika.Zoolog. Jahrb., Abt. Syst., Okol. Geogr. Tiere 104, 560–76.Google Scholar
  47. Rogers, L. E. and Rickard, W. H. (1975) A survey of darkling beetles in desert steppe vegetation after a decade.Ann. Entomol. Soc. Amer. 68, 1069–79.Google Scholar
  48. Rosenzweig, M. L. (1973) Habitat selection experiments with a pair of coexisting heteromyid rodent species.Ecology 62, 327–35.Google Scholar
  49. Rosenzweig, M. L. and Abramsky, Z. (1986) Centrifugal community organization.Oikos 46, 339–48.Google Scholar
  50. Schoener, T. W. (1986) Patterns in terrestrial vertebrate versus arthropod communities: do systematic differences in regularity exist? InCommunity ecology (J. M. Diamond and T. J. Case, eds) pp. 556–86. Harper & Row, New York, NY.Google Scholar
  51. Seely, M. K. (1978) The Namib dune desert: an unusual ecosystem.J. Arid Environs 1, 117–28.Google Scholar
  52. Seely, M. K. (1983) Effective use of the desert dune environment as illustrated by the Namib tenebrionids. InNew trends in soil biology (P. Lebrun, H. M. Andre', A. De Medts, C. Gregoire-Wibo and G. Wauthy, eds) pp. 357–68. Dieu-Brichart Press, Louvain-la-Neuve, Belgium.Google Scholar
  53. Seely, M. K. and Stuart, P. (1976) Namib climate: 2. The climate of Gobabeb; ten-year summary 1962/1972.Namib Bull. 1, 7–9.Google Scholar
  54. Seely, M. K., Buskirk, W. H., Hamilton, W. J., III and Dixon, J. E. W. (1980) Lower Kuiseb River perennial vegetation survey.S. W. Afr. Sci. Soc. 34/35, 57–86.Google Scholar
  55. Shorrocks, B., Rosewell, J., Edwards, K. and Atkinson, W. (1984) Interspecific competition is not a major organizing force in many insect communities.Nature 310, 310–12.Google Scholar
  56. Steele, R. G. D. and Torrie, J. H. (1981)Principles and Procedures of Statistics: a Biometrical Approach. McGraw-Hill, New York, NY.Google Scholar
  57. Strong, D. R. (1982) Harmonious coexistence of hispine beetles onHeliconia in experimental and natural communities.Ecology 63, 1039–49.Google Scholar
  58. Townsend, C. R. and Hildrew, A. G. (1980) Foraging in a patchy environment by a predatory net-spinning caddis larva — a test of optimal foraging theory.Oecologia 47, 219–21.Google Scholar
  59. Underwood, A. (1986) The analysis of competition by field experiments. InCommunity ecology: pattern and process (J. Kikkawa and D.J. Anderson, eds) pp. 240–68. Blackwells, Boston.Google Scholar
  60. Ward, D. (1991) A test of the maxithermy hypothesis with three species of tenebrionid beetles.J. Arid Environ. 21, 331–6.Google Scholar
  61. Ward, D. and Seely, M. K. (1995a) Behavioral thermoregulation in six Namib desert tenebrionid beetle species (Coleoptera).Ann. Entomol. Soc. Am. in press.Google Scholar
  62. Ward, D. and Seely, M. K. (1995b) Adaptation and constraint in the evolution of the physiology and behavior of the Namib desert tenebrionid beetle genusOnymacris. Evolution, in press.Google Scholar
  63. Wharton, R. A. and Seely, M. K. (1982) Species composition of and biological notes on Tenebrionidae of the lower Kuiseb river and adjacent gravel plains.Madoqua 13, 5–25.Google Scholar
  64. Wise, D. H. (1981) A removal experiment with darkling beetles: lack of evidence for interspecific competition.Ecology 62, 727–38.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • David Ward
    • 1
  • Mary K. Seely
    • 1
  1. 1.Desert Ecological Research Unit of Namibia, GobabebSwakopmundNamibia

Personalised recommendations