Skip to main content
Log in

Rational smoothness and fixed points of torus actions

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We obtain a criterion for rational smoothness of an algebraic variety with a torus action, with applications to orbit closures in flag varieties, and to closures of double classes in regular group completions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [A] A. Arabia, Classes d'Euler équivariantes et points rationnellement lisses, Annales de l'Institut Fourier48 (1998), 861–912.

    Google Scholar 

  • [BDP] E. Bifet, C. De Concini, and C. Procesi,Cohomology of regular embeddings, Adv. Math.82, (1990), 1–34.

    Google Scholar 

  • [Br] G. E. Bredon,Introduction to Compact Transformation Groups, Academic Press, New York, 1972. Russian translation: Г. Бредон, Веебенце е меорцю компакмных г⌕упп п⌕еоб⌕азоеании, М., Нанка, Гл. ⌕ед. Физ.-мат. лит., 1980.

    Google Scholar 

  • [B1] M. Brion,The behaviour at infinity of the Bruhat decomposition, Comment. Math. Helv.73 (1998), 137–174.

    Google Scholar 

  • [B2] M. Brion,Equivariant cohomology and equivariant intersection theory, In: Representation Theories and Algebraic Geometry (A. Broer and A. Daigneault, eds.); Kluwer, 1998, pp. 1–37.

  • [C] J. B. Carrell,The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties, In: Algebraic Groups and their Generalizations (W. Haboush and B. Parshall, eds.); American Mathematical Society, 1994, pp. 53–62.

  • [D] M. Dyer,The nil Heck ring and Deodhar's conjecture on Bruhat intervals, Invent. Math.111 (1993), 571–574.

    Google Scholar 

  • [E] D. Eisenbud,Commutative Algebra with a View Towards Algebraic Geometry, Springer, New York, 1994.

    Google Scholar 

  • [H] W. Y. Hsiang,Cohomology Theory of Topological Transformation Groups, Springer, New York, 1975. Russian translation: у. и. Сян, Когомопогицческая меория моиопогическцη груии иреобразоеании, М., Мιр, 1979.

    Google Scholar 

  • [J] R. Joshua,Vanishing of odd-dimensional intersection cohomology, Math. Z.195 (1987), 239–253.

    Google Scholar 

  • [Ka] M. Kashiwara,Representation theory and D-modules on flag manifolds, in: Orbites et Faisceaux Pervers; vol. 173-174, Astérisque, 1989, pp. 55–109.

  • [KL1] D. Kazhdan and G. Lusztig,Representations of Coxeter groups and Hecke algebras, Invent. Math.53 (1979), 165–184.

    Google Scholar 

  • [KL2] D. Kazhdan and G. Lusztig,Schubert varieties and Poincaré duality, In: Proc. Symp. Pure Math.; vol. 36, American Mathematical Society, 1980, pp. 185–203.

  • [Kr] M. Krämer, Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen, Compositio Math.38 (1979), 129–153.

    Google Scholar 

  • [Ku] S. Kumar,The nil Hecke ring and singularity of Schubert varieties, Invent. Math.123 (1996), 476–506.

    Google Scholar 

  • [MS] J. G. M. Mars and T. A. Springer,Hecke algebra representations related to spherical varieties, Represent. Theory2 (1998), 33–69.

    Google Scholar 

  • [PPR] E. A. Pennel, M. S. Putcha and L. E. Renner,Analogues of the Bruhat-Chevalley order for reductive monoids, Journal of Algebra196 (1997), 339–368.

    Google Scholar 

  • [Po] P. Polo,On Zariski tangent spaces of Schubert varieties, and a proof of a conjecture of Deodhar, Indag. Math. (N. S.)4 (1994), 483–493.

    Google Scholar 

  • [R] R. W. Richardson,On orbits of algebraic groups and Lie groups, Bull. Austral. Math. Soc.25 (1982), 1–28.

    Google Scholar 

  • [RS] R. W. Richardson and T. A. Springer,The Bruhat order on symmetric varieties, Geometriae Dedicata35 (1990), 389–436.

    Google Scholar 

  • [S1] T. A. Springer,Some results on algebraic groups with involutions, In: Algebraic groups and related topics; Kinokuniya-North Holland, 1985, pp. 525–543.

  • [S2] T. A. Springer,A combinatorial result on K-orbits on a flag manifold, In: Proceedings of the Sophus Lie Memorial Conference; Scandinavian University Press, 1994, pp. 363–372.

  • [Su] H. Sumihiro,Equivariant completion, J. Math. Kyoto University14 (1974), 1–28.

    Google Scholar 

  • [V] J-L. Verdier,Classe d'homologie associée à un cycle, in: Séminaire de Géométrie Analytique; vol. 36–37, Astérisque, 1976, pp. 101–151.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Claude Chevalley

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brion, M. Rational smoothness and fixed points of torus actions. Transformation Groups 4, 127–156 (1999). https://doi.org/10.1007/BF01237356

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01237356

Keywords

Navigation