Skip to main content
Log in

Unsteady flow with attenuation in a fluid filled elastic tube with a stenosis

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

An equation governing the excess pressure has been derived, for an axially tethered and stenosed elastic tube filled with viscous liquid, by introducing the elasticity of the tube through pressure-area relation. This equation is solved numerically for large Womersley parameter and the results are presented for different types of pressure-radius relations and geometries by prescribing an outgoing wave suffering attenuation at some axial point of the tube. For a locally constricted tube it is observed that the pressure oscillates more and generates sound on the down stream side of the constriction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gerrard, J. H., Taylor, L. A.: Mathematical model representing blood flow in arteries. Med. & Biol. Eng. & Comput.15, 611–617 (1977).

    Google Scholar 

  2. Gerrard, J. H.: The effect of the skin friction on the solution of the one dimensional equations of pulsatile flow in distensible tubes. Med. & Biol. Eng. & Comput.19, 79–82 (1981).

    Google Scholar 

  3. Kurz, W.: Nichtstationäre Strömung in elastischen Modellen arterieller Gefäße. Doctoral Dissertation, RWTH Aachen, 1980.

  4. Lighthill, J.: Waves in fluids. Cambridge University Press 1978.

  5. Ling, S. C., Atabek, H. B.: A non-linear analysis of pulsatile flow in arteries. J. Fluid Mech.55, 493–511 (1972).

    Google Scholar 

  6. Morgan, G. W., Kiely, J. P.: Wave propagation in a viscous liquid contained in a flexible tube. J. Acoust. Soc. Amer.26, 323–328 (1954).

    Google Scholar 

  7. Olsen, J. L., Shapiro, A. H.: Large amplitude unsteady flow in a liquid filled elastic tubes. J. Fluid Mech.29, 513–538 (1967).

    Google Scholar 

  8. Pedley, T. J.: The fluid mechanics of large blood vessels. Cambridge University Press 1980.

  9. Ramachandra Rao, A.: Oscillatory flow in an elastic tube of variable cross section. Acta Mechanica46, 155–165 (1983).

    Google Scholar 

  10. Ramachandra Rao, A.: Mathematical models of blood flow in arterial stenosis. Proc. Symposium on Mathematical Modelling (July 19–20) MRI, Allahabad (1982).

  11. Rudinger, G.: Review of current mathematical methods for the analysis of blood flow. Proc. Biomed. Fluid Mechs. Symposium ASME, New York, 1966.

  12. Streeter, V. L., Keitzer, W. F., Bohr, D. F.: Energy dissipation in pulsatile flow through distensible tapered vessels, in: Pulsatile blood flow (Attinger, E. O., ed.), pp. 149–177. New York: McGraw-Hill.

  13. Taylor, L. A., Gerrard, J. H.: Pressure-radius relationships for elastic tubes and their application to arteries: Part 1—Theoretical relationships; Part 2—A comparison of theory and experiment for a rubber tube. Med. & Biol. Eng. & Comput.15, 11–21 (1977).

    Google Scholar 

  14. Tomm, D.: Strömung Geräusch in verengten und verzweigten Gefäßen. Doctoral Dissertation, RWTH Aachen, 1978.

  15. Womersley, J. R.: An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries. WADC Tech. Rep. 56-614, 1957.

  16. Zeller, H., Reinecke, J.: Geräuschentwicklung in arteriellen Gefäßverengungen. Abhandlungen, Aerodyn. Institut der RWTH Aachen, Heft 24, 7–13 (1980).

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 5 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, A.R. Unsteady flow with attenuation in a fluid filled elastic tube with a stenosis. Acta Mechanica 49, 201–208 (1983). https://doi.org/10.1007/BF01236351

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01236351

Keywords

Navigation