Skip to main content
Log in

A general field theory of cauchy continuum: Classical mechanics

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The fundamentals of Cauchy continuum mechanics are set into discussion in view of unifying the methods of classical and relativistic field theory.

From a general variational principle—also valid for history-dependent materials—a set of four Euler-Lagrange equations are obtained. Noether's Erster Satz supplies, ten (actually reducing to seven) further equalities which, combined with the previous ones, yield the conservation laws of the field theory, expressing the properties of invariance of physical laws with respect to infinitesimal transformations of the reference frame. Some topics are discussed, concerning conservation laws in classical field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Truesdell, C.: A first course in rational continuum mechanics. New York: J. Wiley & Sons 1977.

    Google Scholar 

  2. Vujanovic, B.: On one variational principle for irreversible phenomena. Acta Mechanica19, 259–275 (1974).

    Google Scholar 

  3. Djukic, D. S.: Conservation laws in classical mechanics for quasi-coordinates. Arch. Rational Mech. Anal.56, 79–98 (1974).

    Google Scholar 

  4. Djukic, D. S., Vujanovic, B.: Noether's theory in classical non-conservative mechanics. Acta Mechanica23, 17–27 (1975).

    Google Scholar 

  5. Marietta, M. G., Swan, G. W.: A Lagrangian formulation for continuous media. Int. J. Non-Linear Mechanics12, 49–68 (1977).

    Google Scholar 

  6. Wang, C. C.: Stress relaxation and the principle of fading memory. Arch. Rational Mech. Anal.18, 117–126 (1965).

    Google Scholar 

  7. Coleman, B. D., Noll, W.: An approximation theorem for functionals, with applications in continuum mechanics. Arch. Rational Mech. Anal.6, 355–370 (1960).

    Google Scholar 

  8. Wang, C. C.: The principle of fading memory. Arch. Rational Mech. Anal.18, 343–366 (1965).

    Google Scholar 

  9. Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Handbuch der Physik (Flügge, ed.), III, 3. berlin-Heidelberg-New York: Springer 1965.

    Google Scholar 

  10. Nowacki, W.: Teoria Pelzania, french transl. as „Théorie du fluage”, Paris: Eyrolles 1965.

    Google Scholar 

  11. Baldacci, R., Capurro, M.: Una misura invariante di deformazione nella meccanica dei continui. Atti VI Congr. Naz. AIMETA-Genova 1982, Vol. II, 92–102 (1982).

    Google Scholar 

  12. Capecchi, A., Capurro, M., Conti, G., Tafanelli, A.: Sulla dissipazione interna del calcestruzzo a bassa frequenza: ricerca di parametri costitutivi del materiale non influenzati dalla struttura. Atti IX Conv. Naz. AIAS-Triest1981, 545–554 (1981).

    Google Scholar 

  13. Capecchi, A., Capurro, M., Tafanelli, A.: On the internal damping as a constitutive parameter of materials. In: Soil dynamics and earthquake engineering. Proc. Conf. Southampton 1982,1, 147–163. Rotterdam: Balkema 1982.

    Google Scholar 

  14. Hamermesh, M.: Group theory and its application to physical problems. Reading, Mass: Addison-Wesley 1964.

    Google Scholar 

  15. Noether, E.: Invariante Variationsprobleme. Kgl. Ges. d. Wiss. Nachrichten Göttingen, Math.-phys. Klasse,2, 235–257 (1918).

    Google Scholar 

  16. Murnaghan, F. D.: The theory of group representations. Baltimore: The Johns Hopkins Press 1938.

    Google Scholar 

  17. Knowles, J. K., Sternberg, E.: On a class of conservation laws in linearized and finite elastostatics. Arch. Rational Mech. Anal.44, 187–211 (1971/72).

    Google Scholar 

  18. Fletcher, D. C.: Conservation laws in linear elastodynamics. Arch. Rational Mech. Anal.60, 329–353 (1976).

    Google Scholar 

  19. Atanackovic, T. M.: On conservation laws for continuous bodies. Acta Mechanica38, 157–167 (1981).

    Google Scholar 

  20. Vujanovic, B.: Conservation laws of dynamical systems via d'Alembert's principle. Int. J. Non-Linear Mech.13, 185–197 (1978).

    Google Scholar 

  21. Vujanovic, B.: A geometrical approach to the conservation laws of non-conservative dynamical systems. Tensor32, 357–368 (1978).

    Google Scholar 

  22. Rice, J. R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. of Appl. Mech., Trans. ASME35, Ser. E, 379–386 (1968).

    Google Scholar 

  23. Nilsson, F.: A path-independent integral for transient crack problems. Int. J. Solids Structures9, 1107–1115 (1973).

    Google Scholar 

  24. Truesdell, C., Toupin, R.: The classical field, theories. In: Handbuch der Physik, (Flügge, ed.), III, 1. Berlin-Göttingen-Heidelberg: Springer 1960.

    Google Scholar 

  25. Bolotin, V. V.: Nekonservativnye žadači teorii uprugoi ustoičivosti. Moskva: 1961. English transl. as “Nonconservative problems of the theory of elastic stability”. Oxford: Pergamon Press 1963.

    Google Scholar 

  26. Baldacci, R.: Sopra un principio variazionale nella teoria degli spostamenti elastici non infinitesimi. Rend. Accad. Naz. Lincei (8),23, 250–254 (1957).

    Google Scholar 

  27. Gurtin, M. E.: The linear theory of elasticity. In: Handbuch der Physik (Flügge, ed.), VI a/2. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 1 Figure

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capurro, M. A general field theory of cauchy continuum: Classical mechanics. Acta Mechanica 49, 169–190 (1983). https://doi.org/10.1007/BF01236349

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01236349

Keywords

Navigation