Skip to main content
Log in

Time-harmonic and nonstationary stochastic vibrations of arch dam-reservoir-systems

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Solutions for the interacting vibrations of a linear elastic arch dam with a linear compressible, three-dimensional, irregularly shaped fluidbody are presented. The vibration response is derived for a time harmonic excitation of the arch dam and, with regard to an earthquake analysis, for nonstationary stochastic excitation processes. The expansions of the stochastic responses are based on time-dependent power spectral density functions, demanding the evaluation of the frequency response spectras in advance. These time-harmonic solutions are obtained by means of substructure synthesis method, thereby applying a boundary integral equation formulation for the vibrating fluidbody.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Westergaard, H. M.: Water pressures on dams during earthquakes. Proc. ASCE57, 1303–1318 (1931), and Trans. ASCE98, 418–433 (1933).

    Google Scholar 

  2. Newmark, N. M., Rosenblueth, E.: Fundamentals of earthquake engineering, pp. 177–214. Englewood Cliffs, N.J.: Prentice-Hall 1971.

    Google Scholar 

  3. Nath, B.: Hydrodynamic, pressure on arch dams —By a mapping finite element method. Earthquake Engineering and Structural Dynamics9, 117–131 (1981).

    Google Scholar 

  4. Pao, Y. H., Mow, C. C.: Diffraction of elastic waves and dynamic stress concentrations, pp. 141–171. New York: Crane Russak, London: Adam Hilger 1973.

    Google Scholar 

  5. Höllinger, F.: Earthquake excited vibrations of elastic dam-fluid systems (in German). Doctoral Thesis, Technical University of Vienna, 1982.

  6. Höllinger, F.: Ein Randintegralgleichungsverfahren für Flüssigkeitsschwingungen in beliebig geformten Staubecken mit elastischen Sperrenkonstruktionen. ZAMM62, T46-T48 (1982).

    Google Scholar 

  7. Saini, S. S., Bettess, P., Zienkiewicz, O. C.: Coupled hydrodynamic response of concrete gravity dams using finite and infinite elements. Earthquake Engineering and Structural Dynamics6, 363–374 (1978).

    Google Scholar 

  8. Clough, R. W., Penzien, J.: Dynamics of structures. New York: McGraw-Hill 1975.

    Google Scholar 

  9. Chakrabarti, P., Chopra, A. K.: Earthquake analysis of gravity dams including hydrodynamic interaction. Earthquake Engineering and Structural Dynamics2, 143–160 (1973).

    Google Scholar 

  10. Priestley, M. B.: Power spectral analysis of nonstationary radom processes. Journal of Sound and Vibration6 (1), 88–97 (1967).

    Google Scholar 

  11. Vanmarcke, E. H.: Structural response to earthquakes. In: Seismic risk and engineering decisions (Lomnitz, C., Rosenblueth, E., eds.), pp. 287–337. Amsterdam-Oxford-New York: 1976.

  12. Parkus, H.: Überschwappwahrscheinlichkeit für einen Flüssigkeitsbehälter unter Erdbebeneinwirkung. Ingenieur-Archiv49, 179–185 (1980).

    Google Scholar 

  13. Grossmayer, R.: Aseismic reliability and first-passage failure. In: Random excitation of structures by earthquakes and atmospheric turbulence (Parkus, H., ed.), pp. 110–200. (CISM Courses and Lectures Nr. 225.) Wien-New York: Springer 1977.

    Google Scholar 

  14. Wieland, M.: State of the art report über das dynamische Verhalten von Staumauerbeton während Erdbeben. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, Nr. 24, ETH-Zürich, 1977.

  15. Stoker, J. J.: Water Waves. The mathematical theory with applications. New York: Interscience 1957.

    Google Scholar 

  16. Morse, P. M., Feshbach, H.: Methods of theoretical physics, pp. 803–814. New York-Toronto-London: McGraw-Hill 1953.

    Google Scholar 

  17. Crandall, S. H.: Engineering analysis, pp. 276–288. McGraw-Hill 1956.

  18. Junger, M. C.: Normal modes of submerged plates and shells. In: Fluid-solid interaction, pp. 79–119. ASME 1967.

  19. Meirovitch, L., Hale, A. L.: On the substructure synthesis method, pp. 3–22. Published by the Institute of Sound and Vibration Research, Univ. of Southampton, Southampton SO9NH5, England (1980).

    Google Scholar 

  20. Yang, Ch. Y., Chiarito, V.: Random hydrodynamic force on dams from earthquakes. Journal of the Engineering Mechanics Division ASCE EM1, 117–129 (1981).

    Google Scholar 

  21. Mattioli, F.: Numerical instabilities of the integral approach to the interior boundaryvalue problem for the two-dimensional Helmholtz equation. International Journal for Numerical Methods in Engineering15, 1303–1313 (1980).

    Google Scholar 

  22. Höllinger, F.: Zur Interaktion einer schwingenden, elastischen Platte mit der Flüssigkeit in einem Rechteckbecken. ZAMM61, T43-T45 (1981).

    Google Scholar 

  23. Höllinger, F., Ziegler, F.: Instationäre Zufallsschwingungen einer elastischen Gewichtsmauer bei beliebig geformtem Becken. ZAMM63, 49–54 (1983).

    Google Scholar 

  24. Ziegler, F.: Random vibrations of liquid-filled containers (Excited by earthquakes). Proc. IUTAM-Symp. Random Vibrations and Reliability, Frankfurt, 1982 (in press).

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 3 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höllinger, F. Time-harmonic and nonstationary stochastic vibrations of arch dam-reservoir-systems. Acta Mechanica 49, 153–167 (1983). https://doi.org/10.1007/BF01236348

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01236348

Keywords

Navigation