Skip to main content
Log in

How to design a kinetic-catalytic method of analysis based on ligand substitution reactions

  • Original Papers
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

From a mechanistic consideration on the formation constant of a metal complex, the catalytic effect of a third ligandA on ligand substitution reaction is found to be given by log(k A f )=αE(A)+βH(A)+γE(A), wherek f andk A f refer to the rate constants for a non-catalyzed reaction path and catalyzed reaction path, respectively, andE andH are the electron donor constant and basicity constant of the specified ligand, respectively,α,β, andγ are constants characteristic of a metal ion and their values have been estimated from the mechanistic consideration on the reactivity of a metal ion and its complex. With this equation and the parametersα,β,γ,E, andH, the acceleration effect of halide ions on the ligand substitution reaction of mercury(II)-4-(2-pyridylazo)resorcinol complex with l,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid was quantitatively demonstrated. With the same parameters some possibilities to design a new kinetic-catalytic method of analysis based on ligand substitution reactions were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. B. Yatsimirskii, in:Kinetic Methods in Chemical Analysis, Pergamon, Oxford, 1966.

    Google Scholar 

  2. M. Kopanica, V. Stará, Kinetic Methods in Chemical Analysis, in:Comprehensive Analytical Chemistry, Vol. 18 (G. Svehela, ed.), Elsevier, Amsterdam, 1983.

    Google Scholar 

  3. D. P. Bendito,Analyst [London] 1984,109, 891.

    Google Scholar 

  4. S. Funahashi, M. Tabata, M. Tanaka,Bull. Chem. Soc. Jpn. 1971,44, 1586.

    Google Scholar 

  5. S. Funahashi, M. Tabata, M. Tanaka,Anal. Chim. Acta 1971,57, 311.

    Google Scholar 

  6. M. Tanaka,J. Inorg. Nucl. Chem. 1973,35, 965;1974,36, 151.

    Google Scholar 

  7. R. M. Fuoss,J. Am. Chem. Soc. 1958,80, 5059.

    Google Scholar 

  8. S. Yamada, M. Tanaka,J. Inorg. Nucl. Chem. 1975,37, 587.

    Google Scholar 

  9. R. G. Pearson,J. Am. Chem. Soc. 1963,85, 3533.

    Google Scholar 

  10. M. Tanaka, S. Yamada,J. Chem. Soc. Chem. Commun. 1976, 178.

  11. S. Yamada, T. Kido, M. Tanaka,Inorg. Chem. 1984,23, 2990.

    Google Scholar 

  12. S. Yamada, K. Ohsumi, M. Tanaka,Inorg. Chem. 1978,17, 2790.

    Google Scholar 

  13. S. Yamada, M. Tanaka,Bull. Chem. Soc. Jpn. 1985,58, 2234.

    Google Scholar 

  14. S. Yamada, I. Yamauchi, A. Murata (in preparation).

  15. M. Tabata, S. Funahashi, M. Tanaka,Anal. Chim. Acta 1972,62, 289.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ámada, S., Murata, A. & Tanaka, M. How to design a kinetic-catalytic method of analysis based on ligand substitution reactions. Mikrochim Acta 96, 291–297 (1988). https://doi.org/10.1007/BF01236113

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01236113

Key words

Navigation