Skip to main content
Log in

Using laser micro mass spectrometry with the LAMMA-1000 instrument for monitoring relative elemental concentrations in vitrinite

  • Original Papers
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The variation in relative elemental concentrations among a series of coal macerals belonging to the vitrinite maceral group was determined using laser micro mass spectrometry (LAMMS). Variations in Ba, Cr, Ga, Sr, Ti, and V concentrations among the coals were determined using the LAMM A-1000 instrument. LAMMS analysis is not limited to these elements; their selection illustrates the application of the technique. Ba, Cr, Ga, Sr, Ti, and V have minimal site-to-site variance in the vitrinite macerals of the studied coals as measured by LAMMS. The LAMMS data were compared with bulk elemental data obtained by instrumental neutron activation analysis (INAA) and D. C. arc optical emission spectroscopy (DCAS) in order to determine the reliability of the LAMMS data. The complex nature of the ionization phenomena in LAMMS and the lack of standards characterized on a microscale makes obtaining quantitative elemental data within the ionization microvolume difficult; however, we demonstrate that the relative variation of an element among vitrinites from different coal beds in the eastern United States can be observed using LAMMS in a “bulk” mode by accumulating signal intensities over several microareas of each vitrinite. Our studies indicate gross changes (greater than a factor of 2 to 5 depending on the element) can be monitored when the elemental concentration is significantly above the detection limit.

“Bulk” mode analysis was conducted to evaluate the accuracy of future elemental LAMMS microanalyses. The primary advantage of LAMMS is the inherent spatial resolution, ~ 20μm for coal. Two different vitrite bands in the Lower Bakerstown coal bed (CLB-1) were analyzed. The analysis did not establish any certain concentration differences in Ba, Cr, Ga, Sr, Ti, and V between the two bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Heinen, S. Meier, H. Vogt,Int. J. Mass Spec. Ion Phys. 1983,47, 19.

    Google Scholar 

  2. D. M. Hercules, Solid State Mass Spectrometry Using a Laser Microprobe, in:Analytical Pyrolysis (K. S. Vorhees, ed.), Butterworths, London, 1984, p. 1.

    Google Scholar 

  3. P. C. Lyons, C. A. Palmer, J. D. Fletcher, F. W. Brown, Z. A. Brown, M. R. Krasnow, L. A. Ramankiw,Int. J. Coal Geol. (submitted).

  4. M. Grasserbauer, K. F. J. Heinrich, G. H. Morrison,Pure & Appl. Chem. 1983,55, 2023.

    Google Scholar 

  5. P. Wieser, R. Wurster, R. Wechsung,LAMMA Workshop, Leybold-Heraeus, 1983, p. 29.

  6. S. Tamaki,Mikrochim. Acta [Wien] 1985,III, 1.

    Google Scholar 

  7. G. O. Ramseyer, G. H. Morrison,Anal Chem. 1983,55, 1963.

    PubMed  Google Scholar 

  8. M. A. Rudat, G. H. Morrison,Anal. Chem. 1979,5, 1179.

    Google Scholar 

  9. L. Horton, K. V. Aubrey,J. Soc. Chem. Industry 1950,69, S41.

    Google Scholar 

  10. P. Zubovic, T. Stadnichenko, N. B. Shefey, Chemical Basis of Minor Element Associations in Coal and Other Carbonaceous Sediments, in:Short Papers in the Geologic and Hydrologie Sciences, United States Government Printing Office, Washington, DC, 1961, p. D-345.

    Google Scholar 

  11. H. Vogt, H. J. Heinen, S. Meier, R. Wechsung,Fresenius' Z. Anal. Chem. 1981,308, 195.

    Google Scholar 

  12. P. C. Lyons, D. M. Hercules, J. J. Morelli, G. A. Sellers, D. Mattern, C. L. Thompson-Rizer, F. W. Brown, M. A. Millay,Int. J. Coal Geol. 1987,7, 185.

    Google Scholar 

  13. J. D. Fletcher, D. W. Golightly,The Determination of 28 Elements in Whole Coal by Direct-Current Arc Spectrography, Tech. Report, Department of the Interior, U.S. Geological Survey, Open-File Report 85-204, 1985, p. 14.

  14. C. A. Palmer, P. A. Baedecker,The Determination of 41 Elements in Whole Coal by Instrumental Neutron Activation Analysis, U.S. Geological Survey, Bulletin 1823 (in press).

  15. J. Fijalkowski,Fresenius' Z. Anal. Chem. 1986,324, 519.

    Google Scholar 

  16. W. Michaelis,Fresenius' Z. Anal. Chem. 1986,324, 662.

    Google Scholar 

  17. J. P. Willis,Fresenius' Z. Anal. Chem. 1986,324, 855.

    Google Scholar 

  18. H. J. Gluskoter, R. R. Ruch, W. G. Miller, R. A. Cahill, G. B. Dreher, J. K. Kuhn,Trace Elements in Coal: Occurrence and Distribution, III. Geol. Survey Circ., p. 499.

  19. D. E. Newbury,Scanning 1980,3, 110.

    Google Scholar 

  20. J. D. Ganjie, G. H. Morrison,Anal Chem. 1978,50, 2034.

    Google Scholar 

  21. D. H. Smith, W. H. Christie,Int. J. Mass Spectrom. Ion Phys. 1978,26, 61.

    Google Scholar 

  22. J. D. Ganjie, D. P. Leta, G. H. Morrison,Anal. Chem. 1978,50, 285.

    Google Scholar 

  23. C. A. Palmer, M.-V. Wandless, Distribution of Trace Elements in Coal Macerals of Selected Eastern U.S. Coals, in:Proceedings 1985 International Conference on Coal Science, Pergamon Press, Sydney, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morelli, J.J., Hercules, D.M., Lyons, P.C. et al. Using laser micro mass spectrometry with the LAMMA-1000 instrument for monitoring relative elemental concentrations in vitrinite. Mikrochim Acta 96, 105–118 (1988). https://doi.org/10.1007/BF01236096

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01236096

Key words

Navigation