Skip to main content
Log in

Morphological patterns in the developing vertebrate retina

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

Changes in the morphology of the early optic cup were observed in embryos of two distantly-related vertebrate species, a teleost fish, northern pike (Esox lucius), and chicken (Gallus gallus). A similar morphological pattern was noted to appear in both species shortly after the involution of the optic vesicle and the formation of the inner retinal layer. At a gross level, three notches were observed in the retinal margin at approximately nasal, dorsal, and temporal positions, while in histological sections a sharp constriction was found in the thickness of the dorsal retinal layer. In both species, this dorsal constriction appeared to be continuous with the central or dorsal notch. The time of appearance and configuration of this morphological pattern is intriguingly similar to the specification and polarity of retinal positional markers, and suggest a segmentation hypothesis for the origin of retinal polarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Constantine-Paton M, Blum AS, Mendez-Otero R, Barnstable CJ (1986) A cell surface molecule distributed in a dorsoventral gradient in the perinatal rat retina. Nature 324:459–462

    Google Scholar 

  • Crossland WJ, Cowan WM, Rogers LA, Kelly JP (1974) The specification of the retino-tectal projection in the chick. J Comp Neurol 155:127–164

    Google Scholar 

  • Duke-Elder S (1958) System of ophthalmology (vol I) The eye in evolution. Mosby, St. Louis

    Google Scholar 

  • Fraser S, Keynes R, Lumsden A (1990) Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344:431–435

    Google Scholar 

  • Gaze RM (1970) The formation of nerve connections. Academic Press, London New York

    Google Scholar 

  • Goldberg S (1976) Polarization of the avian retina. Ocular transplantation studies. J Comp Neurol 168:379–392

    Google Scholar 

  • Gottlieb DI, Rock K, Glaser L (1976) A gradient of adhesive specificity in developing avian retina. Proc Natl Acad Sci USA 73:410–414

    Google Scholar 

  • Halfter W, Claviez M, Schwarz U (1981) Preferential adhesion of tectal membranes to anterior embryonic chick retina neurites. Nature 292:67–70

    Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Google Scholar 

  • Hill C (1899) Primary segments of the vertebrate head. Anat Anz 16:353–369

    Google Scholar 

  • Jacobson M (1968) Development of neuronal specificity in retinal ganglion cells ofXenopus. Dev Biol 17:202–218

    Google Scholar 

  • Keynes R, Lumsden A (1990) Segmentation and the origin of regional diversity in the vertebrate central nervous system. Neuron 2:1–9

    Google Scholar 

  • Lindahl C (1912) Über die Pupillaröffnung des Augenbechers in früheren Entwicklungsstadien, mit besonderer Rücksicht auf die Bedeutung der Formverhältnisse derselben für unsere Auffassung von der Entstehung der Iriskolobome. Arch Augenheilk 72:213–260

    Google Scholar 

  • McLoon SC (1991) A monoclonal antibody that distinguishes between temporal and nasal retinal axons. J Neurosci 11:1470–1477

    Google Scholar 

  • Morse DE, McCann PS (1984) Neuroectoderm of the early embryonic rat eye. Invest Ophthalmol Vis Sci 25:899–907

    Google Scholar 

  • Nieuwkoop PD, Faber J (1956) Normal Table ofXenopus Laevis (Daudin). North Holland, Amsterdam

    Google Scholar 

  • Orr H (1887) Contribution to the embryology of the lizard. J Morphol 1:311–373

    Google Scholar 

  • Rabacchi SA, Neve RL, Dräger UC (1990) A positional marker for the dorsal embryonic retina is homologous to the high-affinity laminin receptor. Development 109:521–531

    Google Scholar 

  • Schoenwolf GC, Smith JL (1990) Mechanisms of neurulation: traditional viewpoint and recent advances. Development 109:243–270

    Google Scholar 

  • Sperry RW (1943) Visuomoter coordination in the newt (Triturus viridescens) after regeneration of the optic nerve. J Comp Neurol 79:33–55

    Google Scholar 

  • Sperry RW (1944) Optic nerve regeneration with return of vision in anurans. J Neurophysiol 7:57–69

    Google Scholar 

  • Sperry RW (1963) Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc Natl Acad Sci USA 50:703–710

    Google Scholar 

  • Stone LS (1960) Polarization of the retina and development of vision. J Exp Zool 145:85–95

    Google Scholar 

  • Szekely G (1954) Zur Ausbildung der lokalen funktionellen Spezifität der Retina. Acta Biol Acad Sci Hung 5:157–176

    Google Scholar 

  • Szily A von (1907) Ein nach unten und innen gerichtetes, nicht mit der Fötalspalte zusammenhängendes Kolobom der beiden Augenbecher, bei einem etwa 4 Wochen alten menschlichen Embryo. Klin Monatsbl Augenheilk 45:201–209

    Google Scholar 

  • Trisler GD, Schneider MD, Nirenberg M (1981) A topographic gradient of molecules in retina can be used to identify neuron position. Proc Natl Acad Sci USA 78:2145–2149

    Google Scholar 

  • Walter J, Kern-Veits B, Huf J, Stolze B, Bonhoeffer F (1987) Recognition of position-specific properties of tectal cell membranes by retinal axons in vitro. Development 101:685–696

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordquist, D., McLoon, S.C. Morphological patterns in the developing vertebrate retina. Anat Embryol 184, 433–440 (1991). https://doi.org/10.1007/BF01236049

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01236049

Key words

Navigation