Skip to main content
Log in

Conditioned-reflex activity during the aging process in white rats

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. O. S. Adrianov, Principles of the Organization of the Integrative Brain Activity [in Russian], Meditsina, Moscow (1976).

    Google Scholar 

  2. R. Ya. Atnagulov, “Capabilities for the analysis of the formation of a conditioned reflex to time,” Zh. Vyssh. Nervn. Deyat.,22, No. 5, 1077 (1972).

    Google Scholar 

  3. S. G. Burchinskii, “Changes in the function of interconnections between neuromediator systems during aging and the development of neuropsychological pathology in latter age (review), Zh. Nevropat. Psikh.,85, No. 9, 1394 (1985).

    Google Scholar 

  4. A. S. Dmitriev, “Orientation of the human to time (experiential estimate of short time intervals),” Usp. Fiziol. Nauk,11, No. 4, 47 (1980).

    Google Scholar 

  5. T. A. Mering and E. I. Mukhin, “Effect of destruction of the hippocampus upon conditioned reflexes to time,” Zh. Vyssh. Nervn. Deyat.,21, No. 6, 1147 (1971).

    Google Scholar 

  6. T. A. Mering and O. B. Butenko, “Participation of the caudate nucleus in the reckoning of time intervals and space-time differentiation in the rat,” Zh. Vyssh. Nervn. Deyat.,35, No. 6, 1166 (1985).

    Google Scholar 

  7. N. I. Moiseeva, “Properties of biological time,” in: The Time Factor in the Functional Organization of Activity in Living Systems [in Russian], Nauka, Leningrad (1980).

    Google Scholar 

  8. I. P. Pavlov, Pavlovian Environments, Vol. 1, Akad. Nauk SSSR, Moscow, Leningrad (1949).

    Google Scholar 

  9. A. M. Polyukhov, “Temporal organization of paired functions of the human brain during ontogenesis,” in: The Time Factor in the Functional Organization of Activity in Living Systems [in Russian], Nauka, Leningrad (1980).

    Google Scholar 

  10. V. A. Syusyukin, “Direction of changes in conditioned reflex activity in dogs during aging under the influence of multiple disturbances of higher nervous activity and medication sleep,” in: Problems of Comparative and Evolutionary Gerontology [in Russian], Nauka i Technika, Minsk (1979).

    Google Scholar 

  11. V. A. Troshikhin and Zh. A. Kruchenko, “Development of excitatory and inhibitory processes during ontogenesis in white rats,” Zh. Vyssh. Nervn. Deyat.,18, No. 6, 989 (1968).

    Google Scholar 

  12. V. V. Frol'kis, Aging, Neurohumoral Mechanisms [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  13. F. Aporti, R. Rubini, A. Zanotti, and G. Toffano, “EEG and behavioral pattern in aging rats: effect of brain phosphotidylserine,” EEG Clin. Neurophysiol.,61, No. 3, 156 (1985).

    Google Scholar 

  14. A. F. T. Arnsten and P. Goldman-Rakic, “A2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman,” Science,230, No. 4731, 1273 (1985).

    Google Scholar 

  15. C. A. Barnes and B. L. McNaughton, “An age comparison of the rates of acquisition and forgetting of spatial information in relation to longterm enhancement of hippocampal synapses,” Behav. Neurosci.,99, No. 6, 1040 (1985).

    Google Scholar 

  16. W. H. Beatty, R. A. Bierley, and J. G. Boyd, “Preservation of accurate spatial memory in aged rats,” Neurol. Aging,6, No. 3, 219 (1985).

    Google Scholar 

  17. D. Bernstein, D. S. Olton, D. K. Ingram, et al., “Radial maze performance in young and aged mice: neurochemical correlates,” Pharmacol. Biochem. Behav.,22, No. 2, 301, (1985).

    Google Scholar 

  18. R. A. Bierley, G. J. Rixen, A. J. Tröster, and W. W. Beatty, “Preserved spatial memory in old rats survives 10 months without training,” Behav. and Neurol. Biol.,45, No. 2, 223 (1986).

    Google Scholar 

  19. F. H. Gage, P. A. T. Kelly, and A. Bjorklund, “Regional changes in brain glucose metabolism reflect cognitive impairments in aged rats,” J. Neurosci.,4, No. 11, 2856 (1984).

    Google Scholar 

  20. W. A. van Gool, M. Mirmiran, and F. van Haaren, “Spatial memory and visual evoked potentials in young and old rats after housing in an enriched environment,” Behav. Neurol. Biol.,44, No. 3, 454 (1985).

    Google Scholar 

  21. J. M. Henry and G. S. Roth, “Solubilization of striatal D-2 dopamine receptors: evidence that apparent loss during aging is not due to membrane sequestration,” J. Gerontol.,41, No. 2, 129 (1986).

    Google Scholar 

  22. H. Rigter, H. D. Veldhuis, and E. R. de Kluet, “Spatial learning and the hippocampal corticosterone receptor system of old rats: effect of the ACTH4–9 analogue ORG 2766,” Brain Res.,309, No. 2, 393 (1984).

    Google Scholar 

  23. H. L. Rüthrich, W. Wetzel, and H. Matthies, “Acquisition and retention of different learning tasks in old rats,” Behav. Neurol. Biol.,35, No. 1, 139 (1982).

    Google Scholar 

  24. W. W. Sarvillo, “Age and the perception of short intervals of time,” J. Gerontol.,19, No. 3, 322 (1964).

    Google Scholar 

  25. D. N. Stephens, R. Weidmann, D. Quartermain, and M. Sarter, “Reversal learning in senescent rats,” Behav. Brain Res.,17, No. 3, 193 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel'nosti imeni I. P. Pavlova, Vol. 38, No. 4, pp. 667–674, July–August, 1988.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mering, T.A. Conditioned-reflex activity during the aging process in white rats. Neurosci Behav Physiol 19, 294–300 (1989). https://doi.org/10.1007/BF01236017

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01236017

Keywords

Navigation