Skip to main content
Log in

Hemodialysis and nitric oxide

  • Review: Redox State in Hemodialysis
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Conclusion

The discovery of the strong vasodilating agent NO stimulated research on its role in blood pressure regulation in a variety of hypertensive and hypotensive disorders, including erythropoietin-induced hypertension or acute hypotension in HD patients. Besides its role in blood pressure regulation, NO possesses other functions as an antimicrobial defense or an oxidant stress. Therefore, further studies may be undertaken to evaluate possible roles of NO in HD-related complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noris M, Benigni A, Boccardo P, Aiello S, Gaspari F, Todeschini M, Figliuzzi M, Remuzzi G. Enhanced nitric oxide synthesis in uremia: implications for platelet dysfunction and dialysis hypotension. Kidney Int 1993;44:445–450

    PubMed  Google Scholar 

  2. Palmer RMJ, Ashton DS, Moncada S. Vascular endothelial cells synthetize nitric oxide froml-arginine. Nature 1988;333:664–666

    PubMed  Google Scholar 

  3. Garthwaite J, Charles SL, Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 1988;336:385–388

    PubMed  Google Scholar 

  4. Koide M, Kawahara Y, Nakayama I, Tsuda T, Yokoyama M. Cyclic AMP-elevating agents induce an inducible type of nitric oxide synthase in cultured vascular smooth muscle cells. J Biol Chem 1993;268:24959–24966

    PubMed  Google Scholar 

  5. Forstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, Kleinert H. Nitric oxide synthase isozymes: characterization, purification, molecular cloning, and functions. Hypertension 1994;23:1121–1131

    PubMed  Google Scholar 

  6. Stadler J, Billiar TR, Curran RD, Stuehr DJ, Ochoa JB, Simmons RL. Effect of exogenous and endogenous nitric oxide on mitochondrial respiration of rat hepatocytes. Am J Physiol 1991;260:C910-C916

    PubMed  Google Scholar 

  7. Green SJ, Meltzer MS, Hibbs JB Jr, Nacy CA. Activated macrophages destroy intracellularLeishmania major amastigotes by anl-arginine-dependent killing mechanism. J Immunol 1990;144:278–283

    PubMed  Google Scholar 

  8. Vallance P, Leone A, Calver A, Collier J, Moncada S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 1992;339:572–575

    PubMed  Google Scholar 

  9. Iimura O, Kusano E, Amemiya M, Muto S, Ikeda U, Shimada K, Asano Y. Dipyridamole enhances interleukin-1β-stimulated nitric oxide production by cultured rat vascular smooth muscle cells. Eur J Pharmacol 1996;296:319–326

    PubMed  Google Scholar 

  10. Beasley D, Brenner BM. Role of nitric oxide in hemodialysis hypotension. Kidney Int 1992;38(suppl):S96-S100

    Google Scholar 

  11. Yokokawa K, Mankus R, Mohammed G, Saklayyen MD, Kohno M, Yasunari K, Minami M, Kano H, Horio T, Takeda T, Mandel AK. Increased nitric oxide production in patients with hypotension during hemodialysis. Ann Intern Med 1995;123:35–37

    PubMed  Google Scholar 

  12. Amore A, Bonaudo R, Ghigo D, Arese M, Costamagna C, Cirina P, Gianoglio B, Perugini L, Coppo R. Enhanced production of nitric oxide by blood-dialysis membrane interaction. J Am Soc Nephrol 1995;6:1278–1283

    PubMed  Google Scholar 

  13. Rysz J, Luciak M, Kedziora J, Blaszczyk J, Sibinska E. Nitric oxide release in the peripheral blood during hemodialysis. Kidney Int 1997;51:294–300

    PubMed  Google Scholar 

  14. Sasaki N, Kusano E, Ootomo T, Munakata M, Shimanuki K, Ando Y, Asano Y. Bioincompatibility of hemodialysis membranes with special reference to the changes of blood IL-6, IL-8, and nitric oxide. J Jpn Soc Dial Ther 1999;32:363–368

    Google Scholar 

  15. Ikeda H, Kusano E, Ando Y, Iimura O, Miyata Y, Murayama N, Akai Y, Kuno M, Furuya H, Kotoda K, Asano Y. The use of a vitamine E-modified multilayer filters may reduce advanced glycation end products in uremic patients. J Jpn Soc Dial Ther 1999;32(suppl 1):678(abstr)

    Google Scholar 

  16. Umino T, Kusano E, Inoue M, Yanagiba S, Oono S, Homma S, Tabei K, Ueno K, Goto K, Kuno M, Asano Y. The changes of plasma nitric oxide (NO) concentration during hemodialysis in the patients with endstage renal failure. Comparison between hemodialysis (HD) and hemodiafiltration (HDF). J Jpn Soc Dial Ther 1999;31:933–938

    Google Scholar 

  17. Funayama I, Homma S, Amemiya M, Ebata S, Kusano E, Asano Y, Sato T, Iwamoto M, Mimori A, Minota S. Effect of immunoadsorption therapy for PSS. Jpn J Apheresis 1999;18:150(abstr)

    Google Scholar 

  18. Kuriyama S, Hopp L, Yoshida H, Hikata M, Tomonari H, Hashimoto T, Sakai O. Evidence for amelioration of endothelial cell dysfunction by erythropoietin therapy in predialysis patients. Am J Hypertens 1996;9:426–431

    PubMed  Google Scholar 

  19. Ishimitsu T, Tsukada H, Ogawa Y, Numabe A, Yagi S. Genetic predisposition to hypertension facilitates blood pressure elevation in hemodialysis patients treated with erythropoietin. Am J Med 1993;94:401–406

    PubMed  Google Scholar 

  20. Caravaca F, Pizarro JL, Arrobas M, Cubero JJ, Garcia MC, Perez-Miranda M. Antiplatelet therapy and development of hypertension induced by recombinat human erythropoietin in uremic patients. Kidney Int 1994;45:845–851

    PubMed  Google Scholar 

  21. Caravaca F, Lopez-Minguez JR, Arrobas M, Cubero JJ, Pizarro JL, Cid MC, Sanchez-Casado E, Perez-Miranda M. Hemodynamic changes induced by the correction of anaemia by erythropoietin: role of antiplatelet therapy. Nephrol Dial Transplant 1995;10:1720–1724

    PubMed  Google Scholar 

  22. Kusano E, Akimoto T, Inoue M, Masunaga Y, Umino T, Ono S, Ando Y, Homma S, Muto S, Komatsu N, Asano Y. Human recombinant erythropoietin inhibits interleukin-1β-stimulated nitric oxide and cyclic guanosine monophosphate production in cultured rat vascular smooth-muscle cells. Nephrol Dial Transplant 1999;14:597–603

    PubMed  Google Scholar 

  23. Akimoto T, Kusano E, Muto S, Fujita N, Okada K, Saito T, Komatsu N, Ebata S, Ando Y, Homma S, Asano Y. The effect of erythropoietin on interleukin-1β mediated increase in nitric oxide synthesis in vascular smooth muscle cells. J Hypertens 1999;17:1249–1257

    PubMed  Google Scholar 

  24. Akimoto T, Kusano E, Inaba T, Iimura O, Takahashi H, Ikeda H, Ito C, Ando Y, Ozawa K, Asano Y. Erythropoietin regulates vascular smooth muscle cell apoptosis by phosphatidylinositol 3-kinase dependent pathway. Kidney Int 2000;58:269–282

    PubMed  Google Scholar 

  25. Sasaki N, Ando Y, Kusano E, Asano Y. Inhibition of NO production by recombinant human erythropoietin (r-HuEPO): potential mechanism of rHuEPO induced hypertension in anephric patient. J Jpn soc Dial Ther 1999;32(suppl 1):683 (abstr)

    Google Scholar 

  26. Del Castillo D, Raij L, Shultz PJ, Tolins JP. The pressor effect of recombinant human erythropoietin is not due to decreased activity of the endogenous nitric oxide system. Nephrol Dial Transplant 1995;10:505–508

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Kusano MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusano, E., Akimoto, T., Sasaki, N. et al. Hemodialysis and nitric oxide. J Artif Organs 4, 23–29 (2001). https://doi.org/10.1007/BF01235830

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01235830

Key words

Navigation