Skip to main content
Log in

Erythrocyte redox state in hemodialyzed patients: glutathione and glutathione-related enzymes

  • Review: Redox State in Hemodialysis
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Summary

We have not obtained a reliable conclusion about the role of glutathione in the state of chronic renal failure over 40 years. Because GSH is a very unstable compound, results are conflicting. Careful attention should be paid to sample preparation and analytical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Theil GB, Brodine CE, Doolan PD. Red cell glutathione content and stability in renal insuffciency. J Lab Clin Med 1961;58:736–742

    PubMed  Google Scholar 

  2. Akerboom TPM, Sies H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 1981;77:373–382

    PubMed  Google Scholar 

  3. Burchill BR, Oliver JM, Pearson CB, Leinbach ED, Berlin RD. Microtubule dynamics and glutathione metabolism in phagocytizing human polymorphonuclear leukocytes. J Cell Biol 1978;76:439–447

    PubMed  Google Scholar 

  4. Thomas G, Skrinska V. Determination of glutathione in human platelets. Clin Chem 1985;31:350–351

    Google Scholar 

  5. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 1969;27:502–522

    PubMed  Google Scholar 

  6. Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med 1963;61:882–888

    PubMed  Google Scholar 

  7. Beutler E. The glutathione instability of drug-sensitive red cells. J Lab Clin Med 1957;49:84–95

    PubMed  Google Scholar 

  8. Owens CWI, Belcher RV. A colorimetric micro-method for the determination of glutathione. Biochem J 1965;94:705–711

    PubMed  Google Scholar 

  9. Sies H, Akerboom TPM. Glutathione disulfide (GSSG) efflux from cells and tissues. Methods Enzymol 1984;105:445–451

    PubMed  Google Scholar 

  10. Srivastava SK, Beutler E. Accurate measurement of oxidized glutathione content of human, rabbit, and rat red blood cells and tissues. Anal Biochem 1968;25:70–76

    PubMed  Google Scholar 

  11. Yunis JJ (ed) Biochemical methods in red cell genetics. Chapter 4. Glutathione. New York and London: Academic Press, 1969

    Google Scholar 

  12. Wernze H, Koch W. Glutathion-(GSH)-Gehalt der Erythrocyten bei chronisch renaler Insuffizienz. Klin Wschr 1965;43:451–454

    PubMed  Google Scholar 

  13. Hattori M, Yawata Y, Kikuchi M. The metabolism of red blood cell in disorders with increased hemolysis. Acta Haematol Jpn 1967;30:531–541

    Google Scholar 

  14. Ohwada S. Glutathione metabolism in chronic renal failure patients undergoing hemodialysis-part 1. Nihon Univ J Med 1982;24:359–370

    Google Scholar 

  15. Hefti JE, Blumberg A, Marti HR. Red cell survival and red cell enzymes in patients on continuous peritoneal dialysis (CAPD). Clin Nephrol 1983;19:232–235

    PubMed  Google Scholar 

  16. El-Rashidy FH, Al-Turk WA, Stohs SJ. Glutathione, glutathione reductase and glutathioneS-transferase activities in erythrocytes and lymphocytes in chronic renal disease. Res Commun Chem Pathol Pharmacol 1984;44:423–430

    PubMed  Google Scholar 

  17. Chu P, Cadley M, Bellingham AJ. Red cell metabolism in renal failure-the effect of dialysis. Clin Lab Haematol 1985;7:1–5

    PubMed  Google Scholar 

  18. Mimic-Oka J, Djukanovic L, Markovic B. Erythrocyte and plasma glutathione levels in patients with chronic renal insufficiency. Biochem Med Met Biol 1988;39:48–54

    Google Scholar 

  19. Sachs G, Siems W, Grune T, Schmidt G, Gerber G, Zoellner K. Nucleotide and glutathione status in erythrocytes of children undergoing chronic hemodialysis under erythropoietin treatment. Biomed Biochim Acta 1990;49:S123-S124

    PubMed  Google Scholar 

  20. Biasioli S, Schiavon R, Fanti ED, Cavalcanti G, Giavarina D. The role of erythrocytes in the deperoxidative processes in people on hemodialysis. ASAIO J 1996;42:M890-M894

    PubMed  Google Scholar 

  21. Simic-Ogrizovic S, Simic T, Reljic Z, Markovic S, Blagojevic R, Radivojevic D, Lezaic V, Djukanovic L, Mimic-Oka. Markers of oxidative stress after renal transplantation. Transpl Int 1998;11: S125-S129

    PubMed  Google Scholar 

  22. Blumberg A, Marti HR. Red cell metabolism and haemolysis in patients on dialysis. Proc Eur Dial Transpl Assoc 1972;9:91–96

    Google Scholar 

  23. Chauhan DP, Gupta PH, Nampoothiri MRN, Singhal PC, Chugh KS, Nair CR. Determination of erythrocyte superoxide dismutase, catalase, glucose-6-phosphate dehydrogenase, reduced glutathione and malonyldialdehyde in uremia. Clin Chim Acta 1982;123:153–159

    PubMed  Google Scholar 

  24. Smith CL, Berkseth RO. Sensitivity of erythrocytes to oxidant stress in uremia. Am J Nephrol 1990;10:61–68

    PubMed  Google Scholar 

  25. Mimic-Oka J, Djukanovic L, Simic T, Stefanovski J, Ramic Z. Glutathione and its associated enzymes in chronic renal failure. Amino Acids 1991;1:169–170

    Google Scholar 

  26. Canestrari F, Galli F, Giorgini A, Albertini MC, Galiotta P, Pascucci M, Boss M. Erythrocyte redox state in uremic anemia: effects of hemodialysis and relevance of glutathione metabolism. Acta Haematol 1994;91:187–193

    PubMed  Google Scholar 

  27. Jacobson SH, Moldeus P. Whole blood-, plasma-, and red blood cell glutathione and cysteine in patients with kidney disease and during hemodialysis. Clin Nephrol 1994;42:189–192

    PubMed  Google Scholar 

  28. Canestrari F, Buoncristiani U, Galli F, Giorgini A, Albertini MC, Carobi C, Pascucci M, Bossu M. Redox state, antioxidative activity and lipid peroxidation in erythrocytes and plasma of chronic ambulatory peritoneal dialysis patients. Clin Chim Acta 1995;234:127–136

    PubMed  Google Scholar 

  29. Daschner M, Lenhartz H, Botticher D, Schaefer F, Wollschlager M, Mehls O, Leichsenring M. Influence of dialysis on plasma lipid peroxidation products and antioxidant levels. Kidney Int 1996; 50:1268–1272

    PubMed  Google Scholar 

  30. Suliman ME, Filho JCD, Barany P, Anderstam B, Lindholm B, Bergstrom J. Effects of high-dose folic acid and pyridoxine on plasma and erythrocyte sulfur amino acids in hemodialysis patients. J Am Soc Nephrol 1999;10:1287–1296

    PubMed  Google Scholar 

  31. Galli F, Rovidati S, Benedetti S, Buoncristiani U, Covarelli C, Floridi A, Canestrari F. Overexpression of erythrocyte glutathioneS-transferase in uremia and dialysis. Clin Chem 1999;45:1781–1788

    PubMed  Google Scholar 

  32. Nemeth I, Turi S, Haszon I, Bereczki C. Vitamin E alleviates the oxidative stress of erythropoietin in uremic children on hemodialysis. Pediatr Nephrol 2000;14:13–17

    PubMed  Google Scholar 

  33. Neilan BA, Ehlers SM, Kolpin CF, Eaton JW. Prevention of chloramine-induced hemolysis in dialyzed patients. Clin Nephrol 1978;10:105–108

    PubMed  Google Scholar 

  34. Vanella A, Geremia E, Pinturo R, Tiriolo P, Liuzzo G, Tiriolo C, Custorella A, Condorelli G, Giglio A. Superoxide dismutase activity and reduced glutathione content in erythrocytes of uremic patients on chronic dialysis. Acta Haematol 1983;70:312–315

    PubMed  Google Scholar 

  35. Seth RK, Saini AS, Aggarwal SK. Glutathione peroxidase activity and reduced glutathione content in erythrocytes of patients with chronic renal failure. Scand J Haematol 1985;35:201–204

    PubMed  Google Scholar 

  36. Costagliola C, Romano L, Sorice P, Di Benedetto A. Anemia and chronic renal failure: the possible role of the oxidative state of glutathione. Nephron 1989;52:11–14

    PubMed  Google Scholar 

  37. Costagliola C, Iuliano G, Menzione M, Simonelli F, Tortori A, Masturzi B, Di Benedetto A, Rinaldi E. Systemic human disease as oxidative risk factors in cataractogenesis. II. Chronic renal failure. Exp Eye Res 1990;51:631–635

    PubMed  Google Scholar 

  38. Costagliola C, Romano L, Scibelli G, de Vincentiis A, Sorice P, Di Benedetto A. Anemia and chronic renal failure: a therapeutical approach by reduced glutathione parenteral administration. Nephron 1992;61:404–408

    PubMed  Google Scholar 

  39. Turi S, Nemeth I, Varga I, Bodrogi T, Matkovics B. The effect of erythropoietin on the cellular defence mechanism of red blood cells in children with chronic renal failure. Pediatr Nephrol 1992;6:536–541

    PubMed  Google Scholar 

  40. Pasaoglu H, Muhtaroglu S, Gunes M, Utas C. The role of the oxidative state of glutathione and glutathione-related enzymes in anemia of hemodialysis patients. Clin Biochem 1996;29:567–572

    PubMed  Google Scholar 

  41. Ceballos-Picot I, Witko-Sarsat V, Merad-Boudia M, Nguyen AT, Thevenin M, Jaudon MC, Zingraff J, Verger C, Jungers P, Descamps-Latscha B. Glutathione antioxidant system as a marker of oxidative stress in chronic renal failure. Free Rad Biol Med 1996;21:845–853

    PubMed  Google Scholar 

  42. Ongajooth L, Ongajyooth S, Likidlilid A, Chantachum Y, Shayakul C, Nilwarangkur S. Role of lipid peroxidation, trace elements and antioxidant enzymes in chronic renal disease patients. J Med Assoc Thai 1996;79:791–800

    PubMed  Google Scholar 

  43. Ong-ajyooth L, Ong-ajyooth S, Tiensong K, Nilwarangkur S. Reduced free radical scavengers and chronic renal failure. J Med Assoc Thai 1997;80:101–108

    PubMed  Google Scholar 

  44. Ross EA, Koo LC, Moberly JB. Low whole blood and erythrocyte levels of glutathione in hemodialysis and peritoneal dialysis patients. Am J Kidney Dis 1997;30:489–494

    PubMed  Google Scholar 

  45. Koenig JS, Fischre M, Bulant E, Tiran B, Elmadfa I, Druml W. Antioxidant status in patients on chronic hemodialysis therapy: impact of parenteral selenium supplementation. Wien Klin Wschr 1997;109:13–19

    PubMed  Google Scholar 

  46. Moberly JB, Logan J, Borum PR, Story KO, Webb LE, Jassal SV, Mupas L, Rodela H, Alghamdi GA, Moran JE, Wolfson M, Martis L, Oreopoulos DG. Elevation of whole-blood glutathione in peritoneal dialysis patients by L-2-oxothiazolidine-4-carboxylate, a cysteine prodrug (procysteine). J Am Soc Nephrol 1998;9:1093–1099

    PubMed  Google Scholar 

  47. Martin-Mateo MC, del Canto-Jafiez E, Barrero-Martinez MJ. Oxidative stress and enzyme activity in ambulatory renal patients undergoing continuous peritoneal dialysis. Renal Failure 1998;20: 117–124

    PubMed  Google Scholar 

  48. Martin-Mateo MC, Sanchez-Portugal M, Iglesias S, de Paula A, Bustamante J. Oxidative stress in chronic renal failure. Renal Failure 1999;21:155–167

    PubMed  Google Scholar 

  49. de Cavanagh EMV, Ferder L, Carrasquedo F, Scrivo D, Wassermann A, Fraga CG, Inserra F. Higher levels of antioxidant defenses in enalapril-treated versus non-enalapril-treated hemodialysis patients. Am J Kidney Dis 1999;34:445–455

    PubMed  Google Scholar 

  50. Bock HE, Lohr GW, Waller HD. Beitrag zur Pathogenase renaler Anamien. Schweiz. Med Wschr 1962;92:1213–1219

    Google Scholar 

  51. Ferrone S, Zanella A, Sirchia G. Erythrocyte glutathione reductase activity in chronic renal disease. Scand J Haematol 1970;7:409–412

    PubMed  Google Scholar 

  52. Melissinos KG, Delidou AZ, Varsou AG, Begietti SS, Drivas GJ. Serum and erythrocyte glutathione reductase activity in chronic renal failure. Nephron 1981;28:76–79

    PubMed  Google Scholar 

  53. Bernard S, Dubin J, Madec Y, LeCam M. Sur les variations des quelques activites enzymatiques dans le globute range humain an cours de diverses cironstances phyiologiques et pathologiques. Clin Chim Acta 1966;14:300–310

    PubMed  Google Scholar 

  54. Madec Y, Guenel J, Dubin JC, Carn H, Bernard S. Etude sur les variations de sept activites enzymatique et du tauv du glutathione reduit erythrocytaires an cours des anemies renales. Nouv Rev Fr Hemat 1966;6:873–876

    Google Scholar 

  55. Muller E, Blumberg A, Marti HR. The activity of erythrocyte glutathione peroxidase in chronic renal failure. Klin Wschr 1975;53:879–880

    PubMed  Google Scholar 

  56. Mimic-Oka J, Simic T, Ekmescic V, Dragicevic P. Erythrocyte glutathione peroxidase and superroxide dismutase activities in different stages of chronic renal failure. Clin Nephrol 1995;44:44–48

    PubMed  Google Scholar 

  57. Asayama K, Shiki Y, Ito H, Hasegawa O, Miyao A, Hayashibe H, Dobashi K, Kato K. Antioxidant enzymes and lipoperoxide in blood in uremic children and adolescents. Free Rad Biol Med 1990;9:105–109

    PubMed  Google Scholar 

  58. Yoshimura S, Suemizu H, Nomoto Y, Sakai H, Katsuoka Y, Kawamura N, Moriuchi T. Plasma glutathione peroxidase deficiency caused by renal dysfunction. Nephron 1996;73:207–211

    PubMed  Google Scholar 

  59. Peuchant E, Delmas-Beauvieux MC, Dubourg L, Thomas MJ, Perromat A, Aparicio M, Clerc M, Combe C. Antioxidant effects of a supplemented very low protein diet in chronic renal failure. Free Rad Biol Med 1997;22:313–320

    PubMed  Google Scholar 

  60. Bonnefont-Rousselot D, Jaudon MC, Issad B, Cacoub P, Congy F, Jardel C, Delattre J, Jacobs C. Antioxidant status of elderly chronic renal patients treated by continuous ambulatory peritoneal dialysis. Nephrol Dial Transpl 1997;12:1399–1405

    Google Scholar 

  61. Temple KA, Smith AM, Cockram DB. Selenate-supplemented nutritional formula mula increases plasma selenium in hemodialysis patients. J Renal Nutr 2000;10:16–23

    Google Scholar 

  62. Tho LL, Candlish JK. Superoxide dismutase and glutathione peroxidase activities in erythrocytes as indices of oxygen loading in disease: a survey of one hundred cases. Biochem Med Meta Biol 1987;38:74–80

    Google Scholar 

  63. Richard MJ, Arnaud J, Jurkovitz C, Hachache T, Meftahi H, Laporte F, Foret M, Favier A. Trace elements and lipid peroxidation abnormalities in patients with chronic renal failure. Nephron 1991;57:10–15

    PubMed  Google Scholar 

  64. Turi S, Nemeth I, Vargha I, Matkovics B, Dobos E. Erythrocyte defense mechanisms against free oxygen radicals in haemodialysed uraemic children. Pediatr Nephrol 1991;5:179–183

    PubMed  Google Scholar 

  65. Paul JL, Sall ND, Soni T, Poignet JL, Lindenbaum A, Man NK, Moatti N, Raichvarg D. Lipid peroxidation abnormalities in hemodialyzed patients. Nephron 1993;64:106–109

    PubMed  Google Scholar 

  66. Durak I, Akyol O, Basesme E, Canbolat O, Kavutcu M. Reduced erythrocyte defense mechanisms against free radical toxicity in patients with chronic renal failure. Nephron 1994;66:76–80

    PubMed  Google Scholar 

  67. McGrath LT, Douglas AF, Mcclean E, Brown JH, Doherty CC, Johnston GD, Archbold GPR. Oxidative stress and erythrocyte membrane fluidity in patients undergoing regular dialysis. Clin Chim Acta 1995;235:179–188

    PubMed  Google Scholar 

  68. Chen CK, Liaw JM, Juang JG, Lin TH. Antioxidant enzymes and trace elements in hemodialyzed patients. Biol Trace Element Res 1997;58:149–157

    Google Scholar 

  69. Cavdar C, Camsari T, Semin I, Gonenc S, Acikgoz O. Lipid peroxidation and antioxidant activity in chronic haemodialysis patients treated with recombinant human erythropoietin. Scand J Urol Nephrol 1997;31:371–375

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Owada MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owada, S., Tsukamoto, T., Toyama, K. et al. Erythrocyte redox state in hemodialyzed patients: glutathione and glutathione-related enzymes. J Artif Organs 4, 8–18 (2001). https://doi.org/10.1007/BF01235828

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01235828

Key words

Navigation