Skip to main content

Direct selection of hepatoma cell variants deficient in α1-antitrypsin gene expression

Abstract

Expression plasmids containing the human α1-antitrypsin (α1 AT) promoter fused to either adenine phosphoribosyltransferase (aprt) or xanthine-guanine phosphoribosyltransferase (gpt) coding sequences were sequentially introduced into APRT HPRT rat hepatoma cells. Stable transfectants expressing both transgenes were isolated and characterized. Nonexpressing variants were subsequently obtained by selecting against expression of one or both transgenes. Variants isolated by selecting against expression of either transgene alone generally displayed deficiency phenotypes incis, as only three of 20 clones tested were affected for expression of α1AT mRNA. In contrast, double selection yielded predominantlytrans effects: 12 of 14 lines tested showed impaired ability to express their chromosomal α1AT genes. Furthermore, expression of several other liver genes, including the gene encoding the HNF-1trans-activator, was repressed in many of the variant lines. Thus, double selection using chimeric transgenes is a useful approach for generating variant cell lines deficient in expression of specific mammalian genes.

This is a preview of subscription content, access via your institution.

Literature cited

  1. Johnson, P.F., and McKnight, S.L. (1989).Annu. Rev. Biochem. 58799–839.

    Google Scholar 

  2. Ashman, C.R., and Davidson, R.L. (1987).Proc. Natl. Acad. Sci. U.S.A. 843354–3358.

    Google Scholar 

  3. Pellegrini, S., John, J., Shearer, M., Kerr, I.M., and Stark, G.R. (1989).Mol. Cell. Biol. 94605–4612.

    Google Scholar 

  4. Thacker, J., Debenham, P.G., Stretch, A., and Webb, M.B.T. (1983).Mutat. Res. 1119–23.

    Google Scholar 

  5. Tindall, K.R., Stankowski, L.F., Jr., Machanoff, R., and Hsie, A.W. (1984).Mol. Cell. Biol. 41411–1415.

    Google Scholar 

  6. Gebara, M.M., Drevon, C., Harcourt, S.A., Steingrimsdottir, H., James, M.R., Burke, J.F., Arlett, C.F., and Lehmann, A.R. (1987).Mol. Cell. Biol. 71459–1464.

    Google Scholar 

  7. DeSimone, V., and Cortese, R. (1988). InOxford Surveys on Eukaryotic Genes, Vol. 5 (ed.) McLean, N. (Oxford University Press, Oxford), pp. 51–96.

    Google Scholar 

  8. DeSimone, V., Ciliberto, G., Hardon, E., Paonessa, G., Palla, F., Lundber, L., and Cortese, R. (1987).EMBO J. 62759–2766.

    Google Scholar 

  9. Li, Y., Shen, R.F., Tsai, S.Y., and Woo, S.L.C. (1988).Mol. Cell. Biol. 84362–4369.

    Google Scholar 

  10. Monaci, P., Nicosia, A., and Cortese, R. (1988).EMBO J. 72075–2087.

    Google Scholar 

  11. Bulla, G.A., DeSimone, V., Cortese, R., and Fournier, R.E.K. (1992).Genes Dev. 6316–327.

    Google Scholar 

  12. Pitot, H.C., Peraino, C., Morse, P.A., and Potter, V.R. (1964).Natl. Cancer Inst. Monogr. 13229–242.

    Google Scholar 

  13. Chen, T.R. (1977).Exp. Cell Res. 104255–262.

    Google Scholar 

  14. Dush, M.K., Sikela, J.M., Khan, S.A., Tischfield, J.A., and Sambrook, R.J. (1985).Proc. Natl. Acad. Sci. U.S.A. 822731–2735.

    Google Scholar 

  15. Mulligan, R.C., and Berg, P. (1981).Mol. Cell. Biol. 1449–459.

    Google Scholar 

  16. Maniatis, T., Fritsch, E.F., and Sambrook, J. (1982).Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).

    Google Scholar 

  17. Chu, G., Hayakawa, H., and Berg, P. (1987).Nucleic Acids Res. 151311–1326.

    Google Scholar 

  18. Favaloro, J., Freisman, R., and Kamen, R. (1980).Methods Enzymol. 65718–749.

    Google Scholar 

  19. Cowan, N.J., Dobner, P.R., Fuchs, E.V., and Cleveland, D.W. (1983).Mol. Cell. Biol. 31738–1745.

    Google Scholar 

  20. Sargent, T.D., Wu, J.R., Sala-Trepat, J.M., Wallace, R., Reyes, A.A., and Bonner, J. (1979).Proc. Natl. Acad. Sci. U.S.A. 763256–3260.

    Google Scholar 

  21. Simon, M.P., Besmond, C., Cottreau, D., Weber, A., Chaumet-Riffaud, P., Dreyfus, J.C., Trepat, J.S., Marie, J., and Kahn, A. (1983).J. Biol. Chem. 25814576–14584.

    Google Scholar 

  22. Surh, L.C., Morris, S.M., O'Brien, W.E., and Beaudet, A.L. (1988).Nucleic Acids Res. 169352.

    Google Scholar 

  23. Yoo-Warren, H., Monahan, J.E., Short, J., Short, H., Bruzel, A., Wynshaw-Boris, A., Meisner, H.M., Samols, D., and Hanson, R.W. (1983).Proc. Natl. Acad. Sci. U.S.A. 803656–3660.

    Google Scholar 

  24. Frain, M., Swart, G., Monaci, P., Nicosia, A., Stämpfli, S., Frank, R., and Cortese, R. (1989).Cell 59145–157.

    Google Scholar 

  25. Feinberg, A.P., and Vogelstein, B. (1983).Anal. Biochem. 1326–13.

    Google Scholar 

  26. Bell, G.I., Karam, J.H., and Rutter, W.J. (1981).Proc. Natl. Acad. Sci. U.S.A. 785759–5763.

    Google Scholar 

  27. Mendel, D.B., and Crabtree, G.R. (1991).J. Biol. Chem. 266677–680.

    Google Scholar 

  28. Sladek, F.M., Zhong, W., Lai, E., and Darnell Jr., J.E. (1990).Genes Dev. 42353–2365.

    Google Scholar 

  29. Tripodi, M., Abbott, C., Vivian, N., Cortese, R., and Lovell-Badge, R. (1991).EMBO J. 103177–3182.

    Google Scholar 

  30. Tian, J.-M., and Schibler, U. (1991).Genes Dev. 52225–2234.

    Google Scholar 

  31. Kuo, C.J., Conley, P.B., Chen, L., Sladek, F.M., Darnell, J.E., and Crabtree, G.R. (1992).Nature 355457–461.

    Google Scholar 

  32. Deschatrette, J., Moore, E.E., Dubois, M., and Weiss, M.C. (1980).Cell 191043–1051.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bulla, G.A., Fournier, R.E.K. Direct selection of hepatoma cell variants deficient in α1-antitrypsin gene expression. Somat Cell Mol Genet 18, 361–370 (1992). https://doi.org/10.1007/BF01235759

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01235759

Keywords

  • Hepatoma Cell
  • Direct Selection
  • Stable Transfectants
  • Impaired Ability
  • Mammalian Gene